Matching Items (8)
Filtering by

Clear all filters

151604-Thumbnail Image.png
Description
Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated

Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated in this four-treatment crossover trial. All subjects participated in four trials, each taking place over three days. On the evening of the first day, subjects were fitted with a continuous glucose monitor (CGM). On the second day, subjects were fitted with an ambulatory blood pressure monitor (ABP) and underwent one of the following four conditions in a randomized order: 1) 30-min: 30 minutes of continuous exercise at 60 - 70% VO2peak; 2) Mod 2-min: twenty-one 2-min bouts of walking at 3 mph performed once every 20 minutes; 3) HI 2-min: eight 2-min bouts of walking at maximal incline performed once every hour; 4) Control: a no exercise control condition. On the morning of the third day, the CGM and ABP devices were removed. All meals were standardized during the study visits. Linear mixed models were used to compare mean differences in glucose and blood pressure regulation between the four trials. Results: Glucose concentrations were significantly lower following the 30-min (91.1 ± 14.9 mg/dl), Mod 2-min (93.7 ± 19.8 mg/dl) and HI 2-min (96.1 ± 16.4 mg/dl) trials as compared to the Control (101.1 ± 20 mg/dl) (P < 0.001 for all three comparisons). The 30-min trial was superior to the Mod 2-min, which was superior to the HI 2-min trial in lowering blood glucose levels (P < 0.001 and P = 0.003 respectively). Only the 30-min trial was effective in lowering systolic ABP (124 ± 12 mmHg) as compared to the Control trial (127 ± 14 mmHg; P < 0.001) for up to 11 hours post exercise. Conclusion: Performing frequent short (i.e., 2 minutes) bouts of moderate or high intensity exercise may be a viable alternative to traditional continuous exercise in improving glucose regulation. However, 2-min bouts of exercise are not effective in reducing ambulatory blood pressure in healthy adults.
ContributorsBhammar, Dharini Mukeshkumar (Author) / Gaesser, Glenn A (Thesis advisor) / Shaibi, Gabriel (Committee member) / Buman, Matthew (Committee member) / Swan, Pamela (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2013
152940-Thumbnail Image.png
Description
Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings

Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings to the treatment of PTE, one of which is the use of anticonvulsant medication to the population of TBI patients that are not likely to develop PTE. The complication of identifying the two populations has been hindered by the ability to find a marker to the pathogenesis of PTE. The central hypothesis of this dissertation is that following TBI, the cortex undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes seizure development. Chapter 2 of this dissertation details excitatory and inhibitory changes in the rat cortex after severe TBI. This dissertation aims to identify cortical changes to a single cell level after severe TBI using whole cell patch clamp and electroencephalogram electrophysiology. The work of this dissertation concluded that excitatory and inhibitory synaptic activity in cortical controlled impact (CCI) animals showed the development of distinct burst discharges that were not present in control animals. The results suggest that CCI induces early "silent" seizures that are detectable on EEG and correlate with changes to the synaptic excitability in the cortex. The synaptic changes and development of burst discharges may play an important role in synchronizing the network and promoting the development of PTE.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2014
153020-Thumbnail Image.png
Description
Voluntary exercise has been shown to generate post exercise improvements in executive function within the attention-deficit hyperactivity disorder (ADHD) population. Research is limited on the link between exercise and motor function in this population. Whether or not changes in executive and motor function are observed under assisted exercise conditions is

Voluntary exercise has been shown to generate post exercise improvements in executive function within the attention-deficit hyperactivity disorder (ADHD) population. Research is limited on the link between exercise and motor function in this population. Whether or not changes in executive and motor function are observed under assisted exercise conditions is unknown. This study examined the effect of a six-week cycling intervention on executive and motor-function responses in young adult females with ADHD. Participants were randomized to either a voluntary exercise (VE) or an assisted exercise (AE) group. Both groups performed 30 minute cycling sessions, three times per week, at either a voluntary or assisted rate, on a modified Theracycle Model 200 motorized stationary cycle ergometer. The Mann-Whitney U tests were used to detect median differences between groups, and the Wilcoxon signed-rank tests were used to test median differences within groups. Executive function improvements were greater for AE compared to VE in activation (MDNAE = 162 vs. MDNVE = 308, U = .00, p = .076, ES = .79); planning (MDNAE = 51.0 vs. MDNAE = 40.5, U = .00, p = .083, ES = .77); attention (MDNAE = 13.0 vs. MDNVE = 10.0, U = .00, p = .083, ES = .77); and working memory (MDNAE = 10.0 vs. MDNVE = 6.5, U = .00, p = .076, ES = .79). Motor function improvements were greater for AE compared to VE in manual dexterity (MDNAE = 18 vs. MDNVE = 15.8, U = .00, p = .083, ES = .77); bimanual coordination (MDNAE = 28.0 vs. MDNVE = 25.3, U = .00, p = .083, ES = .77); and gross motor movements of the fingers, hands, and arms (MDNAE = 61.7 vs. MDNVE = 56.0, U = .00, p = .083, ES = .77). Deficits in executive and motor functioning have been linked to lifelong social and psychological impairments in individuals with ADHD. Finding ways to improve functioning in these areas is important for cognitive, emotional and social stability. Compared to VE, AE is a more effective strategy for improving executive and motor functioning in young adult females with ADHD.
ContributorsBirchfield, Natasha (Author) / Ringenbach, Shannon (Thesis advisor) / Lee, Chong (Committee member) / Chisum, Jack (Committee member) / Campbell, Kathyrn (Committee member) / Arizona State University (Publisher)
Created2014
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161511-Thumbnail Image.png
Description
Background: Down syndrome is the leading genetic cause of intellectual disabilities. Executive function is an area that people with Down syndrome have a diminished capacity compared to those in the general population. In recent years it has been determined that acute and chronic exercise has a small but positive effect

Background: Down syndrome is the leading genetic cause of intellectual disabilities. Executive function is an area that people with Down syndrome have a diminished capacity compared to those in the general population. In recent years it has been determined that acute and chronic exercise has a small but positive effect on measures of executive function in typically developed individuals. The effect has been recorded separately in both aerobic, high-rate passive and resistance exercises in adolescents with DS but has not been compared between exercise types in adults with DS. Methods: A randomized crossover study was utilized to determine the effect of resistance exercise, assisted cycling therapy, and no exercise on executive function and enjoyment in adults with Down syndrome. Resistance Training (RT)- participants completed a total of 16- repetitions of approximately 75% of a 1-RM in the leg press, chest press, seated row, and latissimus pulldown. ACT- participants completed 30-minutes of cycling at 35% above voluntary (e.g., self-selected pace) rate. No-Training (NT)- participants spent 35-minutes playing board games. Cognitive assessments were recorded pre- and post- intervention. The Physical Activity Enjoyment Survey was collected post-intervention. Statistics: The cognitive measures and Physical Activity Self-efficacy scale were analyzed using the delta scores (pre-post) in a Linear mixed models analyais. The main effect of sequence (A, B, C) and intervention (RT, ACT, NT), and visit were assessed. Significance level was set with α=0.05. If any differences were detected, the Bonferroni post-hoc test was used to determine differences. Physical Activity Enjoyment Scale post scores were compared using a General Linear Model. Alpha was set at 0.05 with a Bonferroni post-hoc test to determine differences. A secondary analysis was conducted investigating the effect of participants that completed testing individually compared to those that completed the testing in a group setting. Results: There were no significant difference in the delta score of any of the measures. The secondary analysis also found no significant difference but showed a trend that those tested individually had opposite results than those tested in a group.
ContributorsArnold, Nathaniel (Author) / Ringenbach, Shannon (Thesis advisor) / Lee, Chong (Committee member) / Der Ananian, Cheryl (Committee member) / Holzapfel, Simon (Committee member) / Bosch, Pamela (Committee member) / Arizona State University (Publisher)
Created2021
158209-Thumbnail Image.png
Description
Cardiovascular disease has long been one of the leading causes of morbidity in the world and places a large burden on the health care system. Exercise has been shown to reduce the risk of developing cardiovascular disease and the risk factors associated with it. Much of the focus of research

Cardiovascular disease has long been one of the leading causes of morbidity in the world and places a large burden on the health care system. Exercise has been shown to reduce the risk of developing cardiovascular disease and the risk factors associated with it. Much of the focus of research has been on aerobic exercise modalities and their effect on these risk factors, and less is known in regard to the effect of resistance training. One novel risk factor for cardiovascular disease is arterial stiffness, specifically aortic stiffness. Aortic stiffness can be measured by carotid-femoral pulse wave velocity (PWV) and central pressure characteristics such as central blood pressures and augmentation index. The objective of this study was to assess the effect that two different 12-week long resistance training interventions would have on these measurements in sedentary, overweight and obese men and women (BMI ≥ 25 kg/m2). Twenty-one subjects completed the study and were randomized into one of the following groups: control, a low repetition/high load (LRHL) group which performed 3 sets of 5 repetitions for all exercises, and a high repetition/low load (HRLL) group which performed 3 sets of 15 repetitions for all exercises. Those in the resistance training groups performed full-body exercise routines on 3 nonconsecutive days of the week. Changes in arterial stiffness, central blood pressures, and brachial blood pressures were measured before and after the 12-week intervention period. PWV showed significant group by time interaction (p= 0.024) but upon post hoc testing no significant differences were observed due to the control group confounding (control: 7.6 ± 0.8 vs. 7.1 ± 0.8, LRHL: 6.7 ± 0.5 vs. 6.9 ± 0.5, HRLL: 7.03 ± 0.67 vs. 6.59). No other significant interactions or differences were observed for any of the variables tested. Based on the results of this study a 12-week long resistance intervention training, neither high nor moderate-intensity resistance training, resulted in improvements in indices of vascular stiffness or central and peripheral blood pressures.
ContributorsWeeldreyer, Nathan (Author) / Angadi, Siddhartha (Thesis advisor) / Gaesser, Glenn (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2020
Description
Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. When TBI occurs in children it often results in severe cognitive and behavioral deficits. Post-injury, the pediatric brain may be sensitive to the effects of TBI while undergoing a number of age-dependent physiological and neurobiological changes. Due to the nature of the developing cortex, it is important to understand how a pediatric brain recovers from a severe TBI (sTBI) compared to an adult. Investigating major cortical and cellular changes after sTBI in a pediatric model can elucidate why pediatrics go on to suffer more neurological damage than an adult after head trauma. To model pediatric sTBI, I use controlled cortical impact (CCI) in juvenile mice (P22). First, I show that by 14 days after injury, animals begin to show recurrent, non-injury induced, electrographic seizures. Also, using whole-cell patch clamp, layer V pyramidal neurons in the peri-injury area show no changes except single-cell excitatory and inhibitory synaptic bursts. These results demonstrate that CCI induces epileptiform activity and distinct synaptic bursting within 14 days of injury without altering the intrinsic properties of layer V pyramidal neurons. Second, I characterized changes to the cortical inhibitory network and how fast-spiking (FS) interneurons in the peri-injury region function after CCI. I found that there is no loss of interneurons in the injury zone, but a 70% loss of parvalbumin immunoreactivity (PV-IR). FS neurons received less inhibitory input and greater excitatory input. Finally, I show that the cortical interneuron network is also affected in the contralateral motor cortex. The contralateral motor cortex shows a loss of interneurons and loss of PV-IR. Contralateral FS neurons in the motor cortex synaptically showed greater excitatory input and less inhibitory input 14 days after injury. In summary, this work demonstrates that by 14 days after injury, the pediatric cortex develops epileptiform activity likely due to cortical inhibitory network dysfunction. These findings provide novel insight into how pediatric cortical networks function in the injured brain and suggest potential circuit level mechanisms that may contribute to neurological disorders as a result of TBI.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Qiu, Shenfeng (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2015
168585-Thumbnail Image.png
Description
Background: Vegan and vegetarian diets have gained in popularity in recent years. Stated reasons for this include some possible health benefits and concerns of animal welfare. Though considered to be nutritionally adequate, questions remain over whether current protein recommendations of 0.8 g/kg/d are sufficient to maintain body processes and growth.

Background: Vegan and vegetarian diets have gained in popularity in recent years. Stated reasons for this include some possible health benefits and concerns of animal welfare. Though considered to be nutritionally adequate, questions remain over whether current protein recommendations of 0.8 g/kg/d are sufficient to maintain body processes and growth. Protein is unique in that it is the only macronutrient that contains nitrogen. Its status can be determined through nitrogen balance analysis of the urine if protein content of the diet is known. Nitrogen balance is considered the gold standard for determining protein intake requirements. A negative balance indicates a catabolic state, whereas a positive nitrogen balance is seen during anabolism. In healthy people, nitrogen equilibrium is desired under normal circumstances. This equilibrium reflects the net synthesis and breakdown of proteins. While nitrogen balance techniques have been used for decades, currently, there are no known studies measuring nitrogen balance and protein intake in strict vegans. Methods: Twenty vegan, inactive, male participants were recruited and received a 5-day eucaloric diet with a known protein content held constant at 0.8 g/kg/d. On day five, 24-hour urine was collected by participants and aliquoted for future analysis. Nitrogen content of the urine was determined through photometric assay and compared to the known nitrogen content of the diet to calculate nitrogen balance status. Results: Mean absolute nitrogen balance (-1.38 ± 1.22 g/d, effect size = -1.13) was significantly lower than zero (equilibrium) (p < .001). Mean relative nitrogen balance (-18.60 ± 16.96 mg/kg/d, effect size = -1.10) was significantly lower than zero (p < .001). There were no correlations seen between nitrogen balance and age, years as vegan, or fat- free mass. Conclusion: Consuming 0.8 g/kg/d of protein is insufficient to produce nitrogen balance in long-term vegans.
ContributorsBartholomae, Eric (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Wharton, Christopher (Committee member) / Lee, Chong (Committee member) / Kressler, Jochen (Committee member) / Arizona State University (Publisher)
Created2022