Matching Items (2)
Filtering by

Clear all filters

133231-Thumbnail Image.png
Description
The purpose of this experiment is to study whether there is a difference in applied finger force between violinists of different skill proficiencies. It has been hypothesized that more experienced violinists will apply less force during play in their thumb and index fingers. It was found that there was significant

The purpose of this experiment is to study whether there is a difference in applied finger force between violinists of different skill proficiencies. It has been hypothesized that more experienced violinists will apply less force during play in their thumb and index fingers. It was found that there was significant difference in the peak forces applied by the index finger, thumb, and grip (p < 0.05) in all groups except beginner and intermediate violinists in peak thumb force. Significant differences were also found in the continuous force applied by the index finger and grip as well as the standard deviation of the continuous force applied by the thumb (p < 0.05). Additionally, there were no significant differences in the correlation between continuous applied index finger and thumb forces or latency in index and thumb force between different levels or proficiencies (p > 0.05). Due to these results, the hypothesis could not be fully accepted signifying that further testing must be performed.
ContributorsNguyen, Andre (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157696-Thumbnail Image.png
Description
Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a

Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a decrease of proprioceptive error magnitudes and greater endpoint accuracy. Increased focus and attention can also be correlated to neurophysiological activity in the Locus Coeruleus (LC) during a variety of mental tasks. Through non-invasive trigeminal nerve stimulation, it may be possible to affect the activity of the LC and induce improvements in arousal and attention that would assist in proprioceptive estimation. The trigeminal nerve projects to the LC through the mesencephalic nucleus of the trigeminal complex, providing a pathway similar to the effects seen from vagus nerve stimulation. In this experiment, the effect of trigeminal nerve stimulation (TNS) on proprioceptive ability is evaluated by the proprioceptive estimation error magnitude and direction, while LC activation via autonomic pathways is indirectly measured using pupil diameter, pupil recovery time, and pupil velocity. TNS decreases proprioceptive error magnitude in 59% of subjects, while having no measurable impact on proprioceptive strategy. Autonomic nervous system changes were observed in 88% of subjects, with mostly parasympathetic activation and a mixed sympathetic effect.
ContributorsOrthlieb, Gerrit Chi Luk (Author) / Helms-Tillery, Stephen (Thesis advisor) / Tanner, Justin (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019