Matching Items (79)

Physiological Feats of the Body: How We Adapt to Anaerobic Stress Podcast

Description

****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to

****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was recorded before the shut down is uploaded in its stead as a reference as to how the final was intended to sound and be produced. ****

Cellular hypertrophy is an anaerobically-based, adaptive process that mammalian skeletal muscle undergoes in response to damage resulting from unaccustomed force generation by the muscle. Hypertrophy allows for the muscle tissue to recover from the immediate injury and also to be rebuilt more capable of withstanding producing the same amount of force without injury, should it happen again. This means the end result of an adapted muscle is an overall more efficient tissue. The ability to regenerate after damage to the structure and function of the muscle tissue is a highly orchestrated event involving multiple steps and key events to occur. Most briefly, a mechanical load is attempted to be lifted but due to demanding a high amount of contractile force to lift, it causes microdamage to the structural and contractile elements of muscle fiber’s sarcomeres. In addition to an inflammatory response, satellite cells, as a part of a myogenic response, are activated to invade the fiber and then permanently reside inside to produce new proteins that will replace the damaged and necrotized proteins. This addition of cellular content, repeated over multiple times, results in the increased diameter of the fibers and manifests in the visual appearance of skeletal muscle hypertrophy. These steps have been listed off devoid of the contexts in which it takes for these to occur and will be addressed within this thesis.

Contributors

Agent

Created

Date Created
2020-05

132543-Thumbnail Image.png

Octopus Transverse and Internal Longitudinal Arm Muscles in Relation to Fetching Movements

Description

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.

Contributors

Agent

Created

Date Created
2019-05

137009-Thumbnail Image.png

Cannabis: Cannabinoids, Physiology, and Receptor Evolution

Description

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used to develop a complete roster of medicinal benefits. Research regarding the cellular protein receptors that bind the cannabinoids may not only help provide reasons explaining why the Cannabis plant could be medicinally relevant, but will also help explain how the receptors originated. The receptors may have been present in organisms before the present day Cannabis plant. So why would there be receptors that bind to cannabinoids? Searching for an endocannabinoid system could help explain the purpose of the cannabinoid receptors and their current structures in humans. Using genetic technologies we are able to take a closer look into the evolutionary history of cannabinoids and the receptors that bind them.

Contributors

Agent

Created

Date Created
2014-05

148387-Thumbnail Image.png

Statistical Analyses of Octopus bimaculoides Morphology and Physiology

Description

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently

Chapter 1: Functional Specialization and Arm Length in Octopus bimaculoides<br/>Although studies are limited, there is some evidence that octopuses use their arms for specialized functions. For example, in Octopus maya and O. vulgaris, the anterior arms are utilized more frequently for grasping and exploring (Lee, 1992; Byrne et al., 2006a), while posterior arms are more frequently utilized for crawling in O. vulgaris (Levy et al., 2015). In addition, O. vulgaris uses favored arms when retrieving food and making contact with a T-maze as dictated by their lateralized vision (Byrne, 2006b). O. vulgaris also demonstrates a preference for anterior arms when retrieving food from a Y-maze (Gutnick et. al. 2020). In Octopus bimaculoides bending and elongation were more frequent in anterior arms than posterior arms during reaching and grasping tasks, and right arms displayed deformation more frequently than left arms, with the exception of the hectocotylus (R3) in males (Kennedy et. al. 2020). Given these observed functional differences, the goal of this study was to determine if morphological differences exist between different octopus arm identities, coded as L1-L4 and R1-R4. In particular, the relationship between arm length and arm identity was analyzed statistically. The dataset included 111 intact arms from 22 wild-caught specimens of O. bimaculoides (11 male and 11 female). Simple linear regressions and an analysis of covariance were performed to test the relationship between arm length and a number of factors, including body mass, sex, anterior versus posterior location, and left versus the right side. Mass had a significant linear relationship with arm length and a one-way ANOVA demonstrated that arm identity is significantly correlated with arm length. Moreover, an analysis of covariance demonstrated that independent of mass, arm identity has a significant linear relationship with arm length. Despite an overall appearance of bilateral symmetry, arms of different identities do not have statistically equivalent lengths in O. bimaculoides. Furthermore, differences in arm length do not appear to be related to sex, anterior versus posterior location, or left or right side. These results call into question the existing practice of treating all arms as equivalent by either using a single-arm measurement as representative of all eight or calculating an average length and suggest that morphological analyses of specific arm identities may be more informative.<br/><br/>Chapter 2: Predicting and Analyzing Octopus bimaculoides Sensitivity to Global Anesthetic<br/>Although global anesthetic is widely used in human and veterinary medicine the mechanism and impact of global anesthetic is relatively poorly comprehended, even in well-studied mammalian models. Invertebrate anesthetic is even less understood. In order to evaluate factors that impact anesthetic effectiveness analyses were conducted on 22 wild-caught specimens of Octopus bimaculoides during 72 anesthetic events.Three machine learning models: regression tree, random forest, and generalized additive model were utilized to make predictions of the concentration of anesthetic (percent ethanol by volume) from 11 features and to determine feature importance in making those predictions. The fit of each model was analyzed on three criteria: correlation coefficient, mean squared error, and relative error. Feature importance was determined in a model-specific manner. Predictions from the best performing model, random forest, have a .82 correlation coefficient with experimental values. Feature importance suggests that temperature on arrival and cohabitation factors strongly influence predictions for anesthesia concentration. This likely indicates the transportation process was incurring stress on the animals and that cohabitation was also stressful for the typically solitary O. bimaculoides. This long-term stress could lead to a decline in the animal’s well-being and a lower necessary ethanol concentration (Horvath et al., 2013). This analysis provides information to improve the care of octopus in laboratory settings and furthers the understanding of the effects of global anesthetic in invertebrates, particularly one with a distributed nervous system.

Contributors

Agent

Created

Date Created
2021-05

149850-Thumbnail Image.png

Energy expenditure of resistance training activities in young men

Description

ABSTRACT The purpose of this study was to determine the energy cost of four modes of resistance training (push-ups, pull-ups, curl-ups, lunges). Twelve well trained men aged 23.6 (SD=2.84) years were recruited to participate in the study. Each

ABSTRACT The purpose of this study was to determine the energy cost of four modes of resistance training (push-ups, pull-ups, curl-ups, lunges). Twelve well trained men aged 23.6 (SD=2.84) years were recruited to participate in the study. Each of the 12 men completed three trials of each of the four exercises on one visit to the laboratory lasting slightly over one hour (M=72 min, SD=5.9 min). The oxygen consumption of the men was monitored constantly throughout the trial and data was recorded every five seconds. Mean VO2 values were calculated for each exercise. The values for push-ups (M=11.57 ml/kg/min, SD=1.99), curl-ups (M=10.99 ml/kg/min, SD=1.48), pull-ups (M=10.87 ml/kg/min, SD=2.51), and lunges (M=14.18 ml/kg/min, SD=1.78) were converted to METs (Metabolic Equivalents). The MET values (3.31, 3.14, 3.11, and 4.05 respectively) all fall within the range of moderate intensity activity. The findings of this study show that a single set of any of the above exercises will qualify as a moderate intensity activity and can be used to meet recommendations on daily physical activity.

Contributors

Agent

Created

Date Created
2011

151122-Thumbnail Image.png

Forces driving thermogenesis and parental care in pythons

Description

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.

Contributors

Agent

Created

Date Created
2012

152461-Thumbnail Image.png

Examination of the state-dependency and consequences of foraging in a low-energy system, the Gila monster, Heloderma suspectum

Description

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.

Contributors

Agent

Created

Date Created
2014

151926-Thumbnail Image.png

Building adaptive computational systems for physiological and biomedical data

Description

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.

Contributors

Agent

Created

Date Created
2013

131787-Thumbnail Image.png

Evaluating the genomic basis of oxygen-limited thermal tolerance in Drosophila melanogaster

Description

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat.

I am evaluating the genomic basis of a model of heat tolerance in which organisms succumb to warming when their demand for oxygen exceeds their supply. This model predicts that tolerance of hypoxia should correlate genetically with tolerance of heat. To evaluate this prediction, I tested heat and hypoxia tolerance in several genetic lines of Drosophila melanogaster. I hypothesized that genotypes that can fly better at high temperatures are also able to fly well at hypoxia. Genotypes from the Drosophila Genetic Reference Panel (DGRP) were assessed for flight at hypoxia and normal temperature (12% O2 and 25°C) as well as normoxia and high temperature (21% O2 and 39°C). After testing 66 lines from the DGRP, the oxygen- and capacity-limited thermal tolerance theory is supported; hypoxia-resistant lines are more likely to be heat-resistant. This supports previous research, which suggested an interaction between the tolerance of the two environmental variables. I used this data to perform a genome-wide association study to find specific single-nucleotide polymorphisms associated with heat tolerance and hypoxia tolerance but found no specific genomic markers. Understanding factors that limit an organism’s stress tolerance as well as the regions of the genome that dictate this phenotype should enable us to predict how organisms may respond to the growing threat of climate change.

Contributors

Agent

Created

Date Created
2020-05

154503-Thumbnail Image.png

Comparison of hemodynamic responses to acute and chronic exercise in obese and lean prehypertensive men

Description

PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise.

PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise. METHODS: Obese (body mass index (BMI) > 30 kg/m2) and lean (BMI < 25 kg/m2) men with pre-hypertension (PHTN) (systolic BP (SBP) 120 - 139 or diastolic BP (DBP) 80 - 89 mm Hg) were asked to participate in a two-phase trial. Phase 1 assessed differences in post-exercise hypotension between groups in response to an acute exercise bout. Phase 2 consisted of a two-week aerobic exercise intervention at 65-70% of heart rate (HR) max on a cycle ergometer. Primary outcome measures were: brachial BP, central (aortic) BP, cardiac output (CO), and systemic vascular resistance (SVR) measured acutely after one exercise session and following two weeks of training. RESULTS: There were no differences between groups for baseline resting brachial BP, central BP, age, or VO2 peak (all P > 0.05). At rest, obese PHTN had greater CO compared to lean PHTN (6.3 ± 1 vs 4.7 ± 1 L/min-1, P = 0.005) and decreased SVR compared to lean PHTN (1218 ± 263 vs 1606 ± 444 Dyn.s/cm5, P = 0.003). Average 60-minute post-exercise brachial and central SBP reduced by 3 mm Hg in Lean PHTN in response to acute exercise (P < 0.005), while significantly increasing 4 mm Hg for brachial and 3 mm Hg for central SBP (P < 0.05). SVR had a significantly greater reduction following acute exercise in lean PHTN (-223 Dyn·s/cm5) compared to obese PHTN (-75 Dyn·s/cm5, P < 0.001). In lean subjects chronic training reduced brachial BP by 4 mm Hg and central BP by 3 mm Hg but training had no effect on the BP’s in obese subjects. Resting BP reduction in response to training was accompanied by reductions in SVR within lean (-169 Dyn·s/cm5, P < 0.001), while obese experienced increased SVR following training (47 Dyn·s/cm5, P < 0.001). CONCLUSION: Hemodynamic response to both acute and chronic exercise training differ between obese and lean individuals.

Contributors

Agent

Created

Date Created
2016