Matching Items (4)

Filtering by

Clear all filters

132980-Thumbnail Image.png

Beginning to investigate Lactase Persistence in Turkana

Description

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the milk to ensure its proper digestion (Segurel & Bon, 2017). Generally, humans lose the expression of lactase after weaning, which prevents them being able to breakdown lactose from dairy (Flatz, 1987).
My research is focused on the people of Turkana, a human pastoral population inhabiting Northwest Kenya. The people of Turkana are Nilotic people that are native to the Turkana district. There are currently no conclusive studies done on evidence for genetic lactase persistence in Turkana. Therefore, my research will be on the evolution of lactase persistence in the people of Turkana. The goal of this project is to investigate the evolutionary history of two genes with known involvement in lactase persistence, LCT and MCM6, in the Turkana. Variants in these genes have previously been identified to result in the ability to digest lactose post-weaning age. Furthermore, an additional study found that a closely related population to the Turkana, the Massai, showed stronger signals of recent selection for lactase persistence than Europeans in these genes. My goal is to characterize known variants associated with lactase persistence by calculating their allele frequencies in the Turkana and conduct selection scans to determine if LCT/MCM6 show signatures of positive selection. In doing this, we conducted a pilot study consisting of 10 female Turkana individuals and 10 females from four different populations from the 1000 genomes project namely: the Yoruba in Ibadan, Nigeria (YRI); Luhya in Webuye, Kenya; Utah Residents with Northern and Western European Ancestry (CEU); and the Southern Han Chinese. The allele frequency calculation suggested that the CEU (Utah Residents with Northern and Western European Ancestry) population had a higher lactase persistence associated allele frequency than all the other populations analyzed here, including the Turkana population. Our Tajima’s D calculations and analysis suggested that both the Turkana population and the four haplotype map populations shows signatures of positive selection in the same region. The iHS selection scans we conducted to detect signatures of positive selection on all five populations showed that the Southern Han Chinese (CHS), the LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations had stronger signatures of positive selection than the Turkana population. The LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations showed the strongest signatures of positive selection in this region. This project serves as a first step in the investigation of lactase persistence in the Turkana population and its evolution over time.

Contributors

Agent

Created

Date Created
2019-05

Evolutionary perspective suggests candidate genes for variation in Turner Syndrome phenotype

Description

Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15%

Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15% of the genes on the silenced X chromosome escape this inactivation and are candidates for affecting phenotype in people with Turner syndrome. In this study we take an evolutionary approach to rank candidate genes that may contribute to phenotypic variation among people with Turner Syndrome. We incorporate analysis of patterns of DNA methylation from 46,XX and 45,X individuals, and estimates of variable X-inactivation status across 46,XX individuals, with patterns of gene expression conservation on the X chromosomes across five tissues and ten species. We find that genes that escape XCI are possible candidate genes for Turner syndrome phenotype, indicated by the constant levels of expression in escape genes and inactivated genes. Variation in these genes is expected to affect phenotype when dosage is altered from typical levels.

Contributors

Agent

Created

Date Created
2015-12

135114-Thumbnail Image.png

Genetic diversity across the pseudoautosomal boundary varies across human populations

Description

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to have evolved from a Y-specific inversion that suppressed recombination across the boundary. In addition to the two PARs, there is also a human-specific X-transposed region (XTR) that was duplicated from the X to the Y chromosome. Genetic diversity is expected to be higher in recombining than nonrecombining regions, particularly because recombination reduces the effects of linked selection, allowing neutral variation to accumulate. We previously showed that diversity decreases linearly across the previously defined pseudoautosomal boundary (rather than drop suddenly at the boundary), suggesting that the pseudoautosomal boundary may not be as strict as previously thought. In this study, we analyzed data from 1271 genetic females to explore the extent to which the pseudoautosomal boundary varies among human populations (broadly, African, European, South Asian, East Asian, and the Americas). We found that, in all populations, genetic diversity was significantly higher in the PAR1 and XTR than in the non-PAR regions, and that diversity decreased linearly from the PAR1 to finally reach a non-PAR value well past the pseudoautosomal boundary in all populations. However, we also found that the location at which diversity changes from reflecting the higher PAR1 diversity to the lower nonPAR diversity varied by as much as 500 kb among populations. The lack of genetic evidence for a strict pseudoautosomal boundary and the variability in patterns of diversity across the pseudoautosomal boundary are consistent with two potential explanations: (1) the boundary itself may vary across populations, or (2) that population-specific demographic histories have shaped diversity across the pseudoautosomal boundary.

Contributors

Agent

Created

Date Created
2016-12

134792-Thumbnail Image.png

Evading resistance: measuring melanoma's adaptation rate in different drug environments to identify the best course of treatment

Description

While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather

While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need for a better understanding of how different drugs affect the fitness of clones within a tumor population and promote or delay the emergence of resistance. To this end, we have developed an assay that defines the in vitro rate of adaptation by analyzing the progressive change in sensitivity of a melanoma cell line to different treatments. We performed a proof-of-theory experiment based on the hypothesis that drugs that cause cell death (cytotoxic) impose a higher selection pressure for drug-resistant clones than drugs that cause cell-cycle arrest (cytostatic drugs), thereby resulting in a faster rate of adaptation. We tested this hypothesis by continuously treating the BRAFV600E melanoma cell line A375 with the cytotoxic MEK inhibitor E6201 and the cytostatic MEK inhibitor trametinib, both of which are known to be effective in the setting of constitutive oncogenic signaling driven by the BRAF mutation. While the identification of confounding factors prevented the direct comparison between E6201-treated and trametinib-treated cells, we observed that E6201-treated cells demonstrate decreased drug sensitivity compared to vehicle-treated cells as early as 18 days after treatment begins. We were able to quantify this rate of divergence at 2.6% per passage by measuring the increase over time in average viability difference between drug-treated and vehicle-treated cells within a DDR analysis. We argue that this value correlates to the rate of adaptation. Furthermore, this study includes efforts to establish a barcoded cell line to allow for individual clonal tracking and efforts to identify synergistic and antagonist drug combinations for use in future experiments. Ultimately, we describe here a novel system capable of quantifying adaptation rate in cancer cells undergoing treatment, and we anticipate that this assay will prove helpful in identifying treatment options that circumvent or delay resistance through future hypothesis-driven experiments.

Contributors

Agent

Created

Date Created
2016-12