Matching Items (6)
Filtering by

Clear all filters

135555-Thumbnail Image.png
Description
Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to

Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to determine how well flies that evolved in constant and fluctuating temperatures acclimated to hot and cold temperatures. We predicted that flies would perform best at temperatures most similar to the ones the flies evolved at. Best performance was found when rearing and testing temperatures aligned with the temperature at which a genotype had evolved, with the generalist sharing the best and worst performance combination with the constant thermally evolved flies. Interestingly, evolved and reared temperatures had equal impact on flight performance. It was also observed that rearing at 25°C resulted in flies with the best fitness. These results contribute to the specialist-generalist theory and the idea that long term cold development is restricting in terms of range for thermal performance.
ContributorsLe Vinh Thuy, Jacqueline (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Czarnoleski, Marcin (Committee member) / School of Molecular Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136395-Thumbnail Image.png
Description
We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males and females both responded similarly to thermal treatments in average wing and cell size. The resulting cell area for a given wing size in thermal fluctuating populations remains unclear and remains a subject for future research.
ContributorsAdrian, Gregory John (Author) / Angilletta, Michael (Thesis director) / Harrison, Jon (Committee member) / Rusch, Travis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
Description
Animals are thought to die at high temperatures because proteins and cell membranes lose their structural integrity. Alternatively, a newer hypothesis (the oxygen and capacity limitation of thermal tolerance, or OCLTT) states that death occurs because oxygen supply becomes limited at high temperatures. Consequently, animals exposed to hypoxia are more

Animals are thought to die at high temperatures because proteins and cell membranes lose their structural integrity. Alternatively, a newer hypothesis (the oxygen and capacity limitation of thermal tolerance, or OCLTT) states that death occurs because oxygen supply becomes limited at high temperatures. Consequently, animals exposed to hypoxia are more sensitive to heating than those exposed to normoxia or hyperoxia. We hypothesized that animals raised in hypoxia would acclimate to the low oxygen supply, thereby making them less sensitive to heating. Such acclimation would be expressed as greater heat tolerance and better flight performance in individuals raised at lower oxygen concentrations. We raised flies (Drosophila melanogaster) from eggs to adults under oxygen concentrations ranging from 10% to 31% and measured two aspects of thermal tolerance: 1) the time required for flies to lose motor function at 39.5°C at normoxia (21%), referred to as knock-down time, and 2) flight performance at 37°, 39°, or 41°C and 12%, 21%, or 31% oxygen. Contrary to our prediction, flies from all treatments had the same knock-down time. However, flight performance at hypoxia was greatest for flies raised in hypoxia, but flight performance at normoxia and hyperoxia was greatest for flies raised at hyperoxia. Thus, flight performance acclimated to oxygen supply during development, but heat tolerance did not. Our data does not support the OCLTT hypothesis, but instead supports the beneficial acclimation hypothesis, which proposes that acclimation improves the function of an organism during environmental change.
ContributorsShiehzadegan, Shayan (Co-author) / VadenBrooks, John (Co-author) / Le, Jackie (Co-author) / Smith, Colton (Co-author) / Shiehzadegan, Shima (Co-author) / Angilletta, Michael (Co-author, Thesis director) / VandenBrooks, John (Committee member) / Klok, C. J. (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148143-Thumbnail Image.png
Description

Lactate is a commonly known biochemical that is usually produced under anaerobic conditions. This makes it a useful marker for examining the possibility that Drosophila melanogaster undergoes natural hypoxic states during development due to the rate of growth. To analyze this observation and its potential for explaining developmental changes, a

Lactate is a commonly known biochemical that is usually produced under anaerobic conditions. This makes it a useful marker for examining the possibility that Drosophila melanogaster undergoes natural hypoxic states during development due to the rate of growth. To analyze this observation and its potential for explaining developmental changes, a lactate assay was used to quantify lactate produced across time points in the third larval instar and across early adulthood. Lactate assay results showed near-zero lactate levels for both larvae and adults. There were confounding factors present in larval lactate assays which made analysis difficult. However, the results of the adult lactate assays seem to indicate an inability to produce large amounts of lactate regardless of time point in adulthood, suggesting that adults do not naturally experience hypoxia during or after eclosion.

ContributorsWiertek, Marcellina Emilia (Author) / Harrison, Jon (Thesis director) / Angilletta, Michael (Committee member) / Talal, Stav (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131551-Thumbnail Image.png
Description
The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related

The non-native mosquito Aedes aegypti has become a common nuisance in Maricopa county. Associated with human settlement, Ae. aegypti is known to reproduce in standing water sources both indoors and outdoors, within vessels such as tires, flowerpots, and neglected swimming pools (Jansen & Beebe, 2010). Ae. aegypti and the related Ae. albopictus are the primary vectors of the arboviral diseases chikungunya, Zika, yellow fever and dengue. Ae. aegypti tends to blood feed multiple times per gonotrophic cycle (cycle of feeding and egg laying) which, alongside a preference for human blood and close association with human habitation, contributes to an increased risk of Ae. aegypti borne virus transmission (Scott & Takken, 2012). Between 2010-2017, 153 travel-associated cases of dengue were reported in the whole of Arizona (Rivera et al., 2020); while there have been no documented locally transmitted cases of Aedes borne diseases in Maricopa county, there are no apparent reasons why local transmission can’t occur in the future via local Aedes aegypti mosquitoes infected after feeding from travelling viremic hosts. Incidents of local dengue transmission in New York (Rivera et al., 2020) and Barcelona (European Center for Disease Control [ECDC], 2019) suggest that outbreaks of Aedes borne arbovirus’ can occur in regions more temperate than the current endemic range of Aedes borne diseases. Further, while the fact that Ae. aegypti eggs have a high mortality rate when exposed to cold temperatures limits the ability for Ae aegypti to establish stable breeding populations in temperate climates (Thomas, Obermayr, Fischer, Kreyling, & Beierkuhnlein, 2012), global increases in temperature will expand the possible ranges of Ae aegypti and Aedes borne diseases.
ContributorsHon, Ruiheng (Author) / Paaijmans, Krijn (Thesis director) / Bond, Angela (Committee member) / Angilletta, Michael (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05