Matching Items (2)

Filtering by

Clear all filters

134373-Thumbnail Image.png

Analytics of the Prospect Draft in Major League Baseball

Description

Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value

Our research encompassed the prospect draft in baseball and looked at what type of player teams drafted to maximize value. We wanted to know which position returned the best value to the team that drafted them, and which level is safer to draft players from, college or high school. We decided to look at draft data from 2006-2010 for the first ten rounds of players selected. Because there is only a monetary cap on players drafted in the first ten rounds we restricted our data to these players. Once we set up the parameters we compiled a spreadsheet of these players with both their signing bonuses and their wins above replacement (WAR). This allowed us to see how much a team was spending per win at the major league level. After the data was compiled we made pivot tables and graphs to visually represent our data and better understand the numbers. We found that the worst position that MLB teams could draft would be high school second baseman. They returned the lowest WAR of any player that we looked at. In general though high school players were more costly to sign and had lower WARs than their college counterparts making them, on average, a worse pick value wise. The best position you could pick was college shortstops. They had the trifecta of the best signability of all players, along with one of the highest WARs and lowest signing bonuses. These were three of the main factors that you want with your draft pick and they ranked near the top in all three categories. This research can help give guidelines to Major League teams as they go to select players in the draft. While there are always going to be exceptions to trends, by following the enclosed research teams can minimize risk in the draft.

Contributors

Agent

Created

Date Created
  • 2017-05

134603-Thumbnail Image.png

Relationship Between College Baseball Conferences and Average Offensive Production of Major League Baseball Players

Description

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics to their team's philosophy, resulting in playoff appearances and championship success. The competitive market of baseball, once dominated by the collusion of owners, now promotes innovative thought to analytically develop competitive advantages. The tiered economic payrolls of Major League Baseball (MLB) has created an environment in which large-market teams are capable of "buying" championships through the acquisition of the best available talent in free agency, and small-market teams are pushed to "build" championships through the drafting and systematic farming of high-school and college level players. The use of sabermetrics promotes both models of success \u2014 buying and building \u2014 by unbiasedly determining a player's productivity. The objective of this paper is to develop a regression-based predictive model that can be used by Majors League Baseball teams to forecast the MLB career average offensive performance of college baseball players from specific conferences. The development of this model required multiple tasks: I. Data was obtained from The Baseball Cube, a baseball records database providing both College and MLB data. II. Modifications to the data were applied to adjust for year-to-year formatting, a missing variable for seasons played, the presence of missing values, and to correct league identifiers. III. Evaluation of multiple offensive productivity models capable of handling the obtained dataset and regression forecasting technique. IV. SAS software was used to create the regression models and analyze the residuals for any irregularities or normality violations. The results of this paper find that there is a relationship between Division 1 collegiate baseball conferences and average career offensive productivity in Major Leagues Baseball, with the SEC having the most accurate reflection of performance.

Contributors

Agent

Created

Date Created
  • 2017-05