Matching Items (6)
Filtering by

Clear all filters

133868-Thumbnail Image.png
Description
Previous studies have shown that experimentally implemented formant perturbations result in production of compensatory responses in the opposite direction of the perturbations. In this study, we investigated how participants adapt to a) auditory perturbations that shift formants to a specific point in the vowel space and hence remove variability of

Previous studies have shown that experimentally implemented formant perturbations result in production of compensatory responses in the opposite direction of the perturbations. In this study, we investigated how participants adapt to a) auditory perturbations that shift formants to a specific point in the vowel space and hence remove variability of formants (focused perturbations), and b) auditory perturbations that preserve the natural variability of formants (uniform perturbations). We examined whether the degree of adaptation to focused perturbations was different from adaptation to uniform adaptations. We found that adaptation magnitude of the first formant (F1) was smaller in response to focused perturbations. However, F1 adaptation was initially moved in the same direction as the perturbation, and after several trials the F1 adaptation changed its course toward the opposite direction of the perturbation. We also found that adaptation of the second formant (F2) was smaller in response to focused perturbations than F2 responses to uniform perturbations. Overall, these results suggest that formant variability is an important component of speech, and that our central nervous system takes into account such variability to produce more accurate speech output.
ContributorsDittman, Jonathan William (Author) / Daliri, Ayoub (Thesis director) / Berisha, Visar (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148400-Thumbnail Image.png
Description

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown that the type of auditory error received may impact a participant’s corrective response. In this study, we examined whether participants respond differently to categorical or non-categorical errors. We applied two types of perturbation in real-time by shifting the first formant (F1) and second formant (F2) at three different magnitudes. The vowel /ɛ/ was shifted toward the vowel /æ/ in the categorical perturbation condition. In the non-categorical perturbation condition, the vowel /ɛ/ was shifted to a sound outside of the vowel quadrilateral (increasing both F1 and F2). Our results showed that participants responded to the categorical perturbation while they did not respond to the non-categorical perturbation. Additionally, we found that in the categorical perturbation condition, as the magnitude of the perturbation increased, the magnitude of the response increased. Overall, our results suggest that the brain may respond differently to categorical and non-categorical errors, and the brain is highly attuned to errors in speech.

ContributorsCincera, Kirsten Michelle (Author) / Daliri, Ayoub (Thesis director) / Azuma, Tamiko (Committee member) / School of Sustainability (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132359-Thumbnail Image.png
Description
Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change

Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change with
the degree of spectral degradation of auditory feedback as experience by CI users. In this study,
a real-­time sinewave CI simulation was developed to provide NH subjects with auditory
feedback of different spectral resolution (1, 2, 4, and 8 channels). NH subjects were asked to
produce and identify vowels, as well as recognize sentences while listening to the real-­time CI
simulation. The results showed that sentence recognition scores with the real-­time CI simulation
improved with more channels, similar to those with the traditional off-­line CI simulation.
Perception of a vowel continuum “HEAD”-­ “HAD” was near chance with 1, 2, and 4 channels,
and greatly improved with 8 channels and full spectrum. The spectral resolution of auditory
feedback did not significantly affect any acoustic feature of vowel production (e.g., vowel space
area, mean amplitude, mean and variability of fundamental and formant frequencies). There
was no correlation between vowel production and perception. The lack of effect of auditory
feedback spectral resolution on vowel production was likely due to the limited exposure of NH
subjects to CI simulation and the limited frequency ranges covered by the sinewave carriers of
CI simulation. Future studies should investigate the effects of various CI processing parameters
on speech production using a noise-­band CI simulation.
ContributorsPerez Lustre, Sarahi (Author) / Luo, Xin (Thesis director) / Daliri, Ayoub (Committee member) / Division of Teacher Preparation (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131325-Thumbnail Image.png
Description
The purpose of this study was to explore the relationship between acoustic indicators in speech and the presence of orofacial myofunctional disorder (OMD). This study analyzed the first and second formant frequencies (F1 and F2) of the four corner vowels [/i/, /u/, /æ/ and /ɑ/] found in the spontaneous

The purpose of this study was to explore the relationship between acoustic indicators in speech and the presence of orofacial myofunctional disorder (OMD). This study analyzed the first and second formant frequencies (F1 and F2) of the four corner vowels [/i/, /u/, /æ/ and /ɑ/] found in the spontaneous speech of thirty participants. It was predicted that speakers with orofacial myofunctional disorder would have a raised F1 and F2 because of habitual low and anterior tongue positioning. This study concluded no significant statistical differences in the formant frequencies. Further inspection of the total vowel space area of the OMD speakers suggested that OMD speakers had a smaller, more centralized vowel space. We concluded that more study of the total vowel space area for OMD speakers is warranted.
ContributorsWasson, Sarah Alicia (Co-author) / Wasson, Sarah (Co-author) / Weinhold, Juliet (Thesis director) / Daliri, Ayoub (Committee member) / College of Health Solutions (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164965-Thumbnail Image.png
Description

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used in a variety of research settings, including speech neuroscience studies. However, one of the difficulties in using TMS for speech studies is the time that it takes to localize the lip motor cortex representation on the scalp. For my

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique used in a variety of research settings, including speech neuroscience studies. However, one of the difficulties in using TMS for speech studies is the time that it takes to localize the lip motor cortex representation on the scalp. For my project, I used MATLAB to create a software package that facilitates the localization of the ‘hotspot’ for TMS studies in a systematic, reliable manner. The software sends TMS pulses at certain locations, collects electromyography (EMG) data, and extracts motor-evoked potentials (MEPs) to help users visualize the resulting muscle activation. In this way, users can systematically find the subject’s hotspot for TMS stimulation of the motor cortex. The hotspot detection software was found to be an effective and efficient improvement on previous localization methods.

ContributorsKshatriya, Nyah (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Barrett, The Honors College (Contributor) / Business (Minor) (Contributor)
Created2022-05