Matching Items (2)
Filtering by

Clear all filters

150616-Thumbnail Image.png
Description
Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying

Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying mechanisms. The emerging pathogen Batrachochytrium dendrobatidis (Bd) is a clear example of the negative effects infectious diseases can have on wildlife. Bd is linked to global declines in amphibian diversity and abundance. However, there is considerable variation in population-level responses to Bd, with some hosts experiencing marked declines while others persist. Environmental factors may play a role in this variation. This research used populations of pond-breeding chorus frogs (Pseudacris maculata) in Arizona to test if three rapidly changing environmental factors nitrogen (N), phosphorus (P), and temperature influence the presence, prevalence, and severity of Bd infections. I evaluated the reliability of a new technique for detecting Bd in water samples and combined this technique with animal sampling to monitor Bd in wild chorus frogs. Monitoring from 20 frog populations found high Bd presence and prevalence during breeding. A laboratory experiment found 85% adult mortality as a result of Bd infection; however, estimated chorus frog densities in wild populations increased significantly over two years of sampling despite high Bd prevalence. Presence, prevalence, and severity of Bd infections were not correlated with aqueous concentrations of N or P. There was, however, support for an annual temperature-induced reduction in Bd prevalence in newly metamorphosed larvae. A simple mathematical model suggests that this annual temperature-induced reduction of Bd infections in larvae in combination with rapid host maturation may help chorus frog populations persist despite high adult mortality. These results demonstrate that Bd can persist across a wide range of environmental conditions, providing little support for the influence of N and P on Bd dynamics, and show that water temperature may play an important role in altering Bd dynamics, enabling chorus frogs to persist with this pathogen. These findings demonstrate the importance of environmental context and host life history for the outcome of host-pathogen interactions.
ContributorsHyman, Oliver J. (Author) / Collins, James P. (Thesis advisor) / Davidson, Elizabeth W. (Committee member) / Anderies, John M. (Committee member) / Elser, James J. (Committee member) / Escalante, Ananias (Committee member) / Arizona State University (Publisher)
Created2012
157521-Thumbnail Image.png
Description
Emerging infectious diseases (EIDs) in vulnerable populations are a proposed cause of reduced global biodiversity due to local and regional extinctions. Chytridiomycosis, a fungal disease caused by Batrachochytrium dendrobatidis (Bd), is affecting amphibian populations worldwide.

Chapter 1 of this thesis reports using lab-raised larval tiger salamanders (Ambystoma tigrinum nebulosum), collected

Emerging infectious diseases (EIDs) in vulnerable populations are a proposed cause of reduced global biodiversity due to local and regional extinctions. Chytridiomycosis, a fungal disease caused by Batrachochytrium dendrobatidis (Bd), is affecting amphibian populations worldwide.

Chapter 1 of this thesis reports using lab-raised larval tiger salamanders (Ambystoma tigrinum nebulosum), collected as eggs, to test if Bd infects them. Bd infects metamorphosed tiger salamanders; however, it is currently unknown if larvae can be infected by Bd. Adult frogs tend to host Bd on ventral surfaces and hind legs while tadpoles host Bd in keratinized mouthparts. No research has considered differences in infection between life stages of salamanders. It was hypothesized that Bd can colonize larvae in the same manner as metamorphosed animals. Larval salamanders were inoculated to test if Bd concentrations differ among body regions in larvae compared to metamorphosed salamanders. Larvae can carry Bd with the concentration of Bd varying between body region.

Chapter 2 report using native tiger salamanders (Ambystoma tigrinum nebulosum), from northern Arizona and Bd as a study system to test if Bd is native or introduced to Arizona. It was hypothesized that Bd is not endemic to Arizona, but is introduced. There are multiple hypotheses regarding potential routes Bd may have traveled through Arizona and into Mexico. These hypotheses were tested using the Kaibab Plateau in Coconino County, Arizona, as a study site. The plateau is isolated from surrounding areas by the Grand Canyon to the south and the Vermillion Cliffs to the north serving as major biogeographical barriers. It is hypothesized that tiger salamanders are not dispersing into or out of the Kaibab Plateau due to geological restrictions. Bd, therefore, should not be present on salamanders on the Kaibab Plateau due to geological restriction. Tiger salamanders in stock tanks located on the Kaibab as well as preserved museum specimens housed in the Arizona State University Natural History Collection were sampled. The results indicate that Bd occurs at low levels on Kaibab Plateau tiger salamanders.
ContributorsOtsuru, Shinji Author (Author) / Collins, James P. (Thesis advisor) / Davidson, Elizabeth (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2019