Matching Items (42)
152244-Thumbnail Image.png
Description
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR)

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.
ContributorsConley, Quincy (Author) / Atkinson, Robert K (Thesis advisor) / Nguyen, Frank (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2013
156213-Thumbnail Image.png
Description
This dissertation shares the results of a study of the community of the mobile augmented reality game Pokémon Go. It also serves to build on and expand the framework of Distributed Teaching and Learning (DTALS), which here is used as a framework through which to explore the game’s community (Gee

This dissertation shares the results of a study of the community of the mobile augmented reality game Pokémon Go. It also serves to build on and expand the framework of Distributed Teaching and Learning (DTALS), which here is used as a framework through which to explore the game’s community (Gee & Gee, 2016; Holmes, Tran, & Gee, 2017).  DTALS serves to expand on other models which examine learning in out-of-school contexts, and in particular on the connections between classroom and out-of-school learning, which numerous scholars argue is of critical importance (Sefton-Green, 2004; Vadeboncoeur, Kady-Rachid, & Moghtader, 2014). This framework serves to build bridges as well as fill gaps in some key literature on learning in out-of-school contexts, including connected learning (Ito et al., 2009), participatory culture (Jenkins, Purushotma, Weigel, Clinton, & Robison, 2009), learning ecologies (Barron, 2006), and affinity spaces (Gee, 2004; Gee & Hayes, 2012). The model also focuses on teaching in addition to learning in and across informal contexts.

While DTALS can be used to examine any number of phenomena, this dissertation focuses on the community around Pokémon Go. The game, with its emphasis on geography and community, presents unique opportunities for research. This research draws on existing video game research which focuses on not only games but their communities, and in particular the learning and literacy activities which occur in these communities (Gee & Hayes, 2012; Hayes & Duncan, 2012; Squire, 2006; Steinkuehler, 2006).

The results here are presented as three separate manuscripts. Chapter Two takes a broad view of a local community of players, and discusses different player types and how they teach and learn around the game. Chapter Three focuses on families who play the game together, and in particular three focal parents who share their perceptions of the game's merits, especially its potential to promote family bonding and learning. Chapter Four discusses teaching, in particular guides written about the game and the ways in which they are situated in particular Discourses (Gee, 2014). Finally, Chapter Five offers implications from these three chapters, including implications for designers and researchers as well as calls for future research.
ContributorsTran, Kelly Michaela (Author) / Gee, Elisabeth R (Thesis advisor) / Gee, James P (Committee member) / Serafini, Frank (Committee member) / Arizona State University (Publisher)
Created2018
157096-Thumbnail Image.png
Description
The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D

The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D models to enhance the planning, designing, and construction of projects. Augmented Reality (AR) is one technology that could further leverage BIM, especially on the construction site. This research looks at the human performance attributes enabled using AR as the main information delivery tool in the various stages of construction. The results suggest that using AR for information delivery can enhance labor productivity and enable untrained personnel to complete key construction tasks. However, its usability decreases when higher accuracy levels are required. This work contributes to the body of knowledge by empirically testing and validating the performance effects of using AR during construction tasks and highlights the limitations of current generation AR technology related to the construction industry. This work serves as foundation of future industry-based AR applications and research into potential AR implementations.
ContributorsChalhoub, Jad M (Author) / Ayer, Steven K. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Atkinson, Robert K. (Committee member) / Arizona State University (Publisher)
Created2019
133899-Thumbnail Image.png
Description
Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices are for creating a good user experience (UX). Currently, there

Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices are for creating a good user experience (UX). Currently, there are no universally accepted human-computer interaction guidelines for augmented reality because it is still relatively new. This paper examines three features - virtual content scale, indirect selection, and virtual buttons - in an attempt to discover their impact on the user experience in augmented reality. A Battleship game was developed using the Unity game engine with Vuforia, an augmented reality platform, and built as an iOS application to test these features. The hypothesis was that both virtual content scale and indirect selection would result in a more enjoyable and engaging user experience whereas the virtual button would be too confusing for users to fully appreciate the feature. Usability testing was conducted to gauge participants' responses to these features. After playing a base version of the game with no additional features and then a second version with one of the three features, participants rated their experiences and provided feedback in a four-part survey. It was observed during testing that people did not inherently move their devices around the augmented space and needed guidance to navigate the game. Most users were fascinated with the visuals of the game and two of the tested features. It was found that movement around the augmented space and feedback from the virtual content were critical aspects in creating a good user experience in augmented reality.
ContributorsBauman, Kirsten (Co-author) / Benson, Meera (Co-author) / Olson, Loren (Thesis director) / LiKamWa, Robert (Committee member) / School of the Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136586-Thumbnail Image.png
Description
The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy

The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy piece, a blue Lego car piece, a window piece, and a fence piece). Functionality was added to determine the location of these 5 featureful objects within a frame as well by using the SURF keypoints associated with detection. Finally, the feedback mechanism by which the system detects connections between objects was improved to consider the size of the blocks in determining connections rather than using static values. Additional user features such as adding a new object and using voice commands were also implemented to make the system more user friendly.
ContributorsSelvam, Nikil Panneer (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136850-Thumbnail Image.png
Description
Head's up displays (HUD) are now emerging into the technological market that is used in various functionalities, but most of all, they are expensive. An alternative method to find cheaper ways to develop a head's up display is researched and implemented. The HUD is equipped with a processor and projector.

Head's up displays (HUD) are now emerging into the technological market that is used in various functionalities, but most of all, they are expensive. An alternative method to find cheaper ways to develop a head's up display is researched and implemented. The HUD is equipped with a processor and projector. Both of these hardware components encompasses most part of the HUD along with some manipulation of the material that the image is projected on. In this study, the software and the optics of the HUD will be explored and lastly, taking into full consideration on the future work that can be done to make improvements on the HUD.
ContributorsKim, Lilian SA (Author) / Goryll, Michael (Thesis director) / Zhang, Yong-Hang (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
Description
In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control grou

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control group with the use of the Elements 4D mobile application by Daqri to learn basic chemical elements and compounds. The control group learning material provided all the exact information as the application, but in the 2D form of a printed packet. It was expected the experimental group would outperform the control group and have a more enjoyable experience and higher performance. After data analysis, it was concluded that the control group outperformed the experimental group on performance and both groups has similar experiences in contradiction to the hypothesis. Once the factors that contribute to the limitations of different study duration, learning the application beforehand, and only-memorization questions are addressed, the study can be conducted again. Application improvements may also alter the future results of the study and hopefully lead to full implementation into a curriculum.
ContributorsApplegate, Garrett Charles (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133536-Thumbnail Image.png
Description
Large companies that produce engines all have a customer service side of their business to help clients solve the issues they may be having with the company's product. Communication, safety, connectivity, and the shear problem-solving process during these troubleshoots have long since been issues felt within the industry. The aim

Large companies that produce engines all have a customer service side of their business to help clients solve the issues they may be having with the company's product. Communication, safety, connectivity, and the shear problem-solving process during these troubleshoots have long since been issues felt within the industry. The aim of this Honors Thesis was to see how augmented reality could meet the needs of these companies and what it would take to actually implement it. Cummins Care provided a real world example of some of these needs, troubleshooting methods and application. The research conducted into the field of AR shows great promise. The technology available today, and its direction of development, allow for augmented reality to create a much better communication tool. It also allows for engine companies to bring their own engines into the 3D world to benefit troubleshooting. Lastly, as technology continues to advance well into the future, augmented reality will become a needed and powerful tool for analyzing engines in live time through an AR experience.
ContributorsVera, Jason Rafael (Author) / Trimble, Steven (Thesis director) / Brooks, Joseph (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154699-Thumbnail Image.png
Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from

Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
ContributorsLarsson, Daniel (Author) / Artemiadis, Panagiotis (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2016
Description
Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to

Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to develop and test a real time collaboration system between VR and MR. The system works similar to a Google document where two or more users can see what others are doing i.e. writing, modifying, viewing, etc. Similarly, the system developed during this study will enable users in VR and MR to collaborate in real time.

The study of developing a real-time cross-platform collaboration system between VR and MR takes into consideration a scenario in which multiple device users are connected to a multiplayer network where they are guided to perform various tasks concurrently.

Usability testing was conducted to evaluate participant perceptions of the system. Users were required to assemble a chair in alternating turns; thereafter users were required to fill a survey and give an audio interview. Results collected from the participants showed positive feedback towards using VR and MR for collaboration. However, there are several limitations with the current generation of devices that hinder mass adoption. Devices with better performance factors will lead to wider adoption.
ContributorsSeth, Nayan Sateesh (Author) / Nelson, Brian (Thesis advisor) / Walker, Erin (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2017