Matching Items (3)

Filtering by

Clear all filters

134317-Thumbnail Image.png

Modeling Fantasy Baseball Player Popularity Using Twitter Activity

Description

Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As

Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As fantasy baseball continues to grow in popularity, so does the research into better algorithms for picking players. Most of the research done in this area focuses on improving the prediction of a player's individual performance. However, the crowd-sourcing power afforded by social media may enable more informed predictions about players' performances. Players are chosen by popularity and personal preferences by most amateur gamblers. While some of these trends (particularly the long-term ones) are captured by ranking systems, this research was focused on predicting the daily spikes in popularity (and therefore price or draft order) by comparing the number of mentions that the player received on Twitter compared to their previous mentions. In doing so, it was demonstrated that improved fantasy baseball predictions can be made through leveraging social media data.

Contributors

Agent

Created

Date Created
2017-05

137487-Thumbnail Image.png

Intervention Strategies for the DoD Acquisition Process Using Simulation

Description

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.

Contributors

Agent

Created

Date Created
2013-05

137647-Thumbnail Image.png

Early Career Performance Models: Regression-Based Forecasting Models for Predicting Future Major League Baseball Player Performance

Description

The widespread use of statistical analysis in sports-particularly Baseball- has made it increasingly necessary for small and mid-market teams to find ways to maintain their analytical advantages over large market clubs. In baseball, an opportunity for exists for teams with

The widespread use of statistical analysis in sports-particularly Baseball- has made it increasingly necessary for small and mid-market teams to find ways to maintain their analytical advantages over large market clubs. In baseball, an opportunity for exists for teams with limited financial resources to sign players under team control to long-term contracts before other teams can bid for their services in free agency. If small and mid-market clubs can successfully identify talented players early, clubs can save money, achieve cost certainty and remain competitive for longer periods of time. These deals are also advantageous to players since they receive job security and greater financial dividends earlier in their career. The objective of this paper is to develop a regression-based predictive model that teams can use to forecast the performance of young baseball players with limited Major League experience. There were several tasks conducted to achieve this goal: (1) Data was obtained from Major League Baseball and Lahman's Baseball Database and sorted using Excel macros for easier analysis. (2) Players were separated into three positional groups depending on similar fielding requirements and offensive profiles: Group I was comprised of first and third basemen, Group II contains second basemen, shortstops, and center fielders and Group III contains left and right fielders. (3) Based on the context of baseball and the nature of offensive performance metrics, only players who achieve greater than 200 plate appearances within the first two years of their major league debut are included in this analysis. (4) The statistical software package JMP was used to create regression models of each group and analyze the residuals for any irregularities or normality violations. Once the models were developed, slight adjustments were made to improve the accuracy of the forecasts and identify opportunities for future work. It was discovered that Group I and Group III were the easiest player groupings to forecast while Group II required several attempts to improve the model.

Contributors

Agent

Created

Date Created
2013-05