Matching Items (19)
Filtering by

Clear all filters

136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136570-Thumbnail Image.png
Description
The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization

The R-specific alcohol dehydrogenase (RADH or LVIS_0347) from Lactobacillus brevis LB19 was found to possess activity on several short chain aldehydes and ketones. This broad substrate specificity was previously uncharacterized. To demonstrate its relevance to the biofuels industry as well as its broader utility for chiral reductions, a detailed characterization was performed to further investigate the activity and function of RADH.
ContributorsHalloum, Ibrahim (Co-author) / Pugh, Shawn (Co-author) / Nielsen, David R. (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136486-Thumbnail Image.png
Description
This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of

This study was conducted to better understand the making and measuring of renewable energy goals by the federal government. Three different energy types are studied: wind, solar, and biofuel, for two different federal departments: the Department of Defense and the Department of Energy. A statistical analysis and a meta-analysis of current literature will be the main pieces of information. These departments and energy types were chosen as they represent the highest potential for renewable energy production. It is important to understand any trends in goal setting by the federal government, as well as to understand what these trends represent in terms of predicting renewable energy production. The conclusion for this paper is that the federal government appears to set high goals for renewable energy initiatives. While the goals appear to be high, they are designed based on required characteristics described by the federal government. These characteristics are most often technological advancements, tax incentives, or increased production, with tax incentives having the highest priority. However, more often than not these characteristics are optimistic or simply not met. This leads to the resetting of goals before any goal can be evaluated, making it difficult to determine the goal-setting ability of the federal government.
ContributorsStapleton, Andrew (Co-author) / Charnell, Matthew (Co-author) / Printezis, Antonios (Thesis director) / Kull, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment

This document outlines the research work done by Shona Becwar in the process design and refinement for the production of sustainable butanol from Clostridium, along with the required background knowledge on the subject. The process that the microbiological organisms go through to produce butanol must be an oxygen free environment for up to 21 days with multiple perforations made into the environment in this period. There was not previously a cost effective method to do this, even in small scale. It was determined that using a butyl rubber septa would allow for the environment to be sustained during the growth process. The pervaporation process was losing butanol product at a rate of approximately 60%, changing the tubing from silicon to stainless steel allowed for a mere 7% loss during the separation process, greatly increasing the prospective of upscaling this process. These improvements to the sustainable butanol production process will allow for a more efficient, therefore more economically competitive product which can be used as a drop in equivalent to the current butanol market.
ContributorsBecwar, Shona Marie (Author) / Nielsen, David R. (Thesis director) / Staggs, Kyle (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133605-Thumbnail Image.png
Description
Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy

Carbon capture is an essential way to reduce greenhouse gas emissions. One way to decrease the emissions is through the use of adsorbents such as zeolites. Dr. Dong-Kyun Seo’s group (School of Molecular Sciences, Arizona State University) synthesized the nanostructured faujasite (NaX). The zeolite was characterized using Scanning Electron Microscopy (SEM) and the physisorption properties were determined using ASAP 2020. ASAP 2020 tests of the nano-zeolite pellets at 77K in a liquid N2 bath determined the BET surface area of 547.1 m2/mol, T-plot micropore volume of 0.2257 cm3/g, and an adsorption average pore width of 5.9 Å. The adsorption isotherm (equilibrium) of CH4, N2, and CO2 were measured at 25ºC. Adsorption isotherm experiments concluded that the linear isotherm was the best fit for N2, and CH4 and the Sips isotherm was a better fit than the Langmuir and Freundlich isotherm for CO2. At 25ºC and 1 atm the zeolite capacity for CO2 is 4.3339 mmol/g, 0.1948 mmol/g for CH4, and 0.3534 mmol/g for N2. The zeolite has a higher CO2 capacity than the conventional NaX zeolite. Breakthrough experiments were performed in a fixed bed 22in, 0.5 in packing height and width at 1 atm and 298 K with nano-zeolite pellets. The gas chromatographer tested and recorded the data every two minutes with a flow rate of 10 cm3/min for N2 and 10 cm3/min CO2. Breakthrough simulations of the zeolite in a fixed bed adsorber column were conducted on MATLAB utilizing varying pressures, flow rates, and fed ratios of various CO2, N2 and CH4. Simulations using ideal adsorbed solution theory (IAST) calculations determined that the selectivity of CO2 in flue gas (15% CO2 + 85% N2) is 571.79 at 1 MPa, significantly higher than commercial zeolites and literature. The nanostructured faujasite zeolite appears to be a very promising adsorbent for CO2/N2 capture from flue gas and the separation of CO2/N2.
ContributorsClark, Krysta D. (Author) / Deng, Shuguang (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134453-Thumbnail Image.png
Description
Hydrothermal Liquefaction of Algae represents one of many pathways for the sustainable replacement of fossil fuels in transportation. When processing and researching algal biofuel, determination of the higher heating value (HHV) is paramount. Bomb calorimetry represents to current method for direct determination of HHV. When determining HHV’s indirectly, the industry

Hydrothermal Liquefaction of Algae represents one of many pathways for the sustainable replacement of fossil fuels in transportation. When processing and researching algal biofuel, determination of the higher heating value (HHV) is paramount. Bomb calorimetry represents to current method for direct determination of HHV. When determining HHV’s indirectly, the industry standard is using one of many linear correlations relating elemental composition to HHV. Most of these correlations were developed from coal industry data, meaning that they do not necessarily fit algal product data well. In this study bomb calorimetry data and CHNS/O elemental composition data were collected for Chlorella, Micract, GS 5587.1, Kirchnella, and Gal 87.1 MM8 algae species. This data was added to CHNS/O and HHV values for other algal products in literature, and utilized to test the accuracy of the Dulong, Gumz, Vandralek and Boie correlations for algae products. Several preliminary algae specific correlations were proposed through a linear regression model of the data. Of the 5 samples tested, Kirchnella exhibited the highest HHV (23.2405 ± 0.0216 MJ/kg) and Chlorella exhibited the lowest (20.2055 ± 0.0484 MJ/kg). For both the experimental, and literature CHNS/O vs HHV data, the Vandralek and Boie correlations provided the best approximations in this study. For the totality of the data collected and researched in this study, 6 of 8 proposed correlations outperformed the Vandralek equation for HHV approximation. The most promising proposed correlations incorporated multiple linear regressions for elemental fractions of CHS, CHSO and CHNSO. Being that only 20 distinct algal product samples were regressed to create the proposed correlations, more data should be incorporated before publication of a final correlation. This study should serve as a starting point for the compilation of an exhaustive database for algal product assay and HHV data.
ContributorsCopp, Connor Joseph (Author) / Deng, Shuguang (Thesis director) / Muppaneni, Tapaswy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133505-Thumbnail Image.png
Description
While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these

While biodiesel production from photosynthesizing algae is a promising form of alternative energy, the process is water and nutrient intensive. I designed a mathematical model for a photobioreactor system that filters the reactor effluent and returns the permeate to the system so that unutilized nutrients are not wasted, addressing these problems. The model tracks soluble and biomass components that govern the rates of the processes within the photobioreactor (PBR). It considers light attenuation and inhibition, nutrient limitation, preference for ammonia consumption over nitrate, production of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and competition with heterotrophic bacteria that predominately consume SMP. I model a continuous photobioreactor + microfiltration system under nine unique operation conditions - three dilution rates and three recycling rates. I also evaluate the health of a PBR under different dilution rates for two values of qpred. I evaluate the success of each run by calculating values such as biomass productivity and specific biomass yield. The model shows that for low dilution rates (D = <0.2 d-1) and high recycling rates (>66%), nutrient limitation can lead to a PBR crash. In balancing biomass productivity with water conservation, the most favorable runs were those in which the dilution rate and the recycling rate were highest. In a second part of my thesis, I developed a model that describes the interactions of phototrophs and their predators. The model also shows that dilution rates corresponding to realistic PBR operation can washout predators from the system, but the simulation outputs depend heavily on the accuracy of parameters that are not well defined.
ContributorsWik, Benjamin Philip (Author) / Marcus, Andrew (Thesis director) / Rittmann, Bruce (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05