Matching Items (2)
Filtering by

Clear all filters

149295-Thumbnail Image.png
Description

Measuring changes in concentration within a dynamic system can be accomplished with a simple Arduino powered system. Currently, the system is utilized in cyanobacteria CO2 fixation experiments, where the fixation rates of multiple cultures can be measured simultaneously. The system employs solenoids in parallel and can be applied for n

Measuring changes in concentration within a dynamic system can be accomplished with a simple Arduino powered system. Currently, the system is utilized in cyanobacteria CO2 fixation experiments, where the fixation rates of multiple cultures can be measured simultaneously. The system employs solenoids in parallel and can be applied for n number of outlet streams, all are connected to one large manifold which feeds to a CO2 concentration probe. In the future, the system can be modified to fit other simple dynamic gas systems.

ContributorsInnes, Sean (Author) / Nielsen, David (Thesis director) / Jones, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2021-12
131771-Thumbnail Image.png
Description
Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production

Cyanobacteria have the potential to efficiently produce L-serine, an industrially important amino acid, directly from CO2 and sunlight, which is a more sustainable and inexpensive source of energy as compared to current methods. The research aims to engineer a strain of Cyanobacterium Synechococcus sp. PCC 7002 that increases L-serine production by mutating regulatory mechanisms that natively inhibit its production and encoding an exporter. While an excess of L-serine was not found in the supernatant of the cell cultures, with further fine tuning of the metabolic pathway and culture conditions, high titers of L-serine can be found. With the base strain engineered, the work can be extended and optimized by deleting degradation pathways, tuning gene expression levels, optimizing growth conditions, and investigating the effects of nitrogen supplementation for the strain.
ContributorsAbed, Omar (Author) / Nielsen, David (Thesis director) / Jones, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05