Matching Items (2)
Filtering by

Clear all filters

154504-Thumbnail Image.png
Description
Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s

Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s interior. But single cells of these cyanobacteria are too small to sink, so their carbon export has to be mediated by aggregate formation and/or consumption by zooplankton that produce sinking fecal pellets. In this dissertation, I investigated for the first time the aggregation of these cyanobacteria by studying the marine Synechococcus sp. strain WH8102 as a model organism. I first found in culture experiments that Synechococcus cells aggregated and that such aggregation of cells was related to the production of transparent exopolymeric particles (TEP), known to provide the main matrix of aggregates of eukaryotic phytoplankton. I also found that despite the lowered growth rates, cells in the nitrogen or phosphorus limited cultures had a higher cell-normalized TEP production and formed a greater total volume of aggregates with higher settling velocities compared to cells in the nutrient replete cultures. I further studied the Synechococcus aggregation in roller tanks that allow the simulation of aggregates settling in the water column, and investigated the effects of the clays kaolinite and bentonite that are commonly found in the ocean. In the roller tanks, Synechococcus cells formed aggregates with diameters of up to 1.4 mm and sinking velocities of up to 440 m/d, comparable to those of larger eukaryotic phytoplankton such as diatoms. In addition, the clay minerals increased the number but reduced the size of aggregates, and their ballasting effects increased the sinking velocity and the carbon export potential of the aggregates. Lastly, I investigated the effects of heterotrophic bacteria on the Synechococcus aggregation, and found that heterotrophic bacteria generally resulted in the formation of fewer, but larger and faster sinking aggregates, and eventually led to an enhanced aggregation of cells and particles. My study contributes to the understanding of the role of marine pico-cyanobacteria in the ecology and biogeochemistry of oligotrophic oceans.
ContributorsDeng, Wei (Author) / Neuer, Susanne (Thesis advisor) / Anbar, Ariel (Committee member) / Passow, Uta (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2016
Description
Some cyanobacteria, referred to as boring or euendolithic, are capable of excavating tunnels into calcareous substrates, both mineral and biogenic. The erosive activity of these cyanobacteria results in the destruction of coastal limestones and dead corals, the reworking of carbonate sands, and the cementation of microbialites. They thus link the

Some cyanobacteria, referred to as boring or euendolithic, are capable of excavating tunnels into calcareous substrates, both mineral and biogenic. The erosive activity of these cyanobacteria results in the destruction of coastal limestones and dead corals, the reworking of carbonate sands, and the cementation of microbialites. They thus link the biological and mineral parts of the global carbon cycle directly. They are also relevant for marine aquaculture as pests of mollusk populations. In spite of their importance, the mechanism by which these cyanobacteria bore remains unknown. In fact, boring by phototrophs is geochemically paradoxical, in that they should promote precipitation of carbonates, not dissolution. To approach this paradox experimentally, I developed an empirical model based on a newly isolated euendolith, which I characterized physiologically, ultrastructurally and phylogenetically (Mastigocoleus testarum BC008); it bores on pure calcite in the laboratory under controlled conditions. Mechanistic hypotheses suggesting the aid of accompanying heterotrophic bacteria, or the spatial/temporal separation of photosynthesis and boring could be readily rejected. Real-time Ca2+ mapping by laser scanning confocal microscopy of boring BC008 cells showed that boring resulted in undersaturation at the boring front and supersaturation in and around boreholes. This is consistent with a process of uptake of Ca2+ from the boring front, trans-cellular mobilization, and extrusion at the distal end of the filaments (borehole entrance). Ca2+ disequilibrium could be inhibited by ceasing illumination, preventing ATP generation, and, more specifically, by blocking P-type Ca2+ ATPase transporters. This demonstrates that BC008 bores by promoting calcite dissolution locally at the boring front through Ca2+ uptake, an unprecedented capacity among living organisms. Parallel studies using mixed microbial assemblages of euendoliths boring into Caribbean, Mediterranean, North and South Pacific marine carbonates, demonstrate that the mechanism operating in BC008 is widespread, but perhaps not universal.
ContributorsRamírez-Reinat, Edgardo L (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Chandler, Douglas (Committee member) / Farmer, Jack (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2010