Matching Items (3)
Filtering by

Clear all filters

134307-Thumbnail Image.png
Description
Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
ContributorsKiermayr, Jonathan Patrick (Author) / Bean, Heather (Thesis director) / Misra, Rajeev (Committee member) / Haydel, Shelley (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
149541-Thumbnail Image.png
Description
Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the

Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the Synechocystis S-layer protein was identified as Sll1951 and the effect on the carotenoid composition of this prokaryote by disruption of sll1951 was studied. Loss of the S-layer, which was demonstrated by electron microscopy, did not result in loss of carotenoids or changes in the carotenoid profile of the mutant, which was shown by HPLC and protein analysis. Although Δsll1951 was more susceptible to osmotic stress than the wild type, the general viability of the mutant remained unaffected. In a different study a combination of mutants having single or multiple deletions of putative carotenoid cleavage dioxygenase (CCD) genes was created. CCDs are presumed to play a role in the breakdown of carotenoids or apo-carotenoids. The carotenoid profiles of the mutants that were grown under conditions of increased reactive oxygen species were analyzed by HPLC. Pigment lifetimes of all strains were estimated by 13C-labeling. Carotenoid composition and metabolism were similar in all strains leading to the conclusion that the deleted CCDs do not affect carotenoid turnover in Synechocystis. The putative CCDs either do not fulfill this function in cyanobacteria or alternative pathways for carotenoid degradation exist. Finally, slr0941, a gene of unknown function but a conserved genome position in many cyanobacteria downstream of the δ-carotene desaturase, was disrupted. Initially, the mutant strain was impaired in growth but displayed a rather normal carotenoid content and composition, but an apparent second-site mutation occurred infrequently that restored growth rates and caused an accumulation of carotenoid isomers not found in the wild type. Based on the obtained data a role of the slr0941 gene in carotenoid binding/positioning for isomerization and further conversion to mature carotenoids is suggested.
ContributorsTrautner, Christoph (Author) / Vermaas, Willem Fj (Thesis advisor) / Chandler, Douglas E. (Committee member) / Misra, Rajeev (Committee member) / Bingham, Scott E (Committee member) / Arizona State University (Publisher)
Created2011
161811-Thumbnail Image.png
Description
I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by

I studied the molecular mechanisms of ultraviolet radiation mitigation (UVR) in the terrestrial cyanobacterium Nostoc punctiforme ATCC 29133, which produces the indole-alkaloid sunscreen scytonemin and differentiates into motile filaments (hormogonia). While the early stages of scytonemin biosynthesis were known, the late stages were not. Gene deletion mutants were interrogated by metabolite analyses and confocal microscopy, demonstrating that the ebo gene cluster, was not only required for scytonemin biosynthesis, but was involved in the export of scytonemin monomers to the periplasm. Further, the product of gene scyE was also exported to the periplasm where it was responsible for terminal oxidative dimerization of the monomers. These results opened questions regarding the functional universality of the ebo cluster. To probe if it could play a similar role in organisms other than scytonemin producing cyanobacteria, I developed a bioinformatic pipeline (Functional Landscape And Neighbor Determining gEnomic Region Search; FLANDERS) and used it to scrutinize the neighboring regions of the ebo gene cluster in 90 different bacterial genomes for potentially informational features. Aside from the scytonemin operon and the edb cluster of Pseudomonas spp., responsible for nematode repellence, no known clusters were identified in genomic ebo neighbors, but many of the ebo adjacent regions were enriched in signal peptides for export, indicating a general functional connection between the ebo cluster and biosynthetic compartmentalization. Lastly, I investigated the regulatory span of the two-component regulator of the scytonemin operon (scyTCR) using RNAseq of scyTCR deletion mutants under UV induction. Surprisingly, the knockouts had decreased expression levels in many of the genes involved in hormogonia differentiation and in a putative multigene regulatory element, hcyA-D. This suggested that UV could be a cue for developmental motility responses in Nostoc, which I could confirm phenotypically. In fact, UV-A simultaneously elicited hormogonia differentiation and scytonemin production throughout a genetically homogenous population. I show through mutant analyses that the partner-switching mechanism coded for by hcyA-D acts as a hinge between the scytonemin and hormogonia based responses. Collectively, this dissertation contributes to the understanding of microbial adaptive responses to environmental stressors at the genetic and regulatory level, highlighting their phenomenological and mechanistic complexity.
ContributorsKlicki, Kevin (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Wilson, Melissa (Committee member) / Mukhopadhyay, Aindrila (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2021