Matching Items (7)

134567-Thumbnail Image.png

Modifying and Optimizing 1H NMR for Amino Acid Analysis

Description

The parameters of microwave-assisted acid hydrolysis (MAAH) and 1H NMR highly affect the quantitative analysis of protein hydrolysates. Microwave-induction source, NMR spectral resolution, and data analysis are key parameters in

The parameters of microwave-assisted acid hydrolysis (MAAH) and 1H NMR highly affect the quantitative analysis of protein hydrolysates. Microwave-induction source, NMR spectral resolution, and data analysis are key parameters in the nuclear magnetic resonance – amino acid analysis (NMR-AAA) workflow where errors accrue due to lack of an optimized protocol. Hen egg white lysozyme was hydrolyzed using an 800W domestic microwave oven for varying time points between 10-25 minutes, showing minimal protein hydrolysis after extended time periods. Studies on paramagnetic doping with varying amounts of gadolinium chloride for increased NMR resolution resulted in little T1 reduction in a majority of amino acids and resulted in significant line broadening in concentrations above 1µM. The use of the BAYESIL analysis tool with HOD suppressed 1H-NMR spectra resulted in misplaced template peaks and errors greater than 1% for 10 of 13 profiled amino acids with the highest error being 7.6% (Thr). Comparatively, Chenomx NMR Suite (v7.1) analysis resulted in errors of less than 1% for 9 of 13 profiled amino acids with a highest error value of 3.6% (Lys). Using the optimized protocol, hen egg white lysozyme C was identified at rank 1 with a score of 64 in a Gallus gallus species wide AACompIdent search. This technique reduces error associated with sample handling relative to previously used amino acid analysis (AAA) protocols and requires no derivatization or additional processing of the sample prior to analysis.

Contributors

Agent

Created

Date Created
  • 2017-05

131309-Thumbnail Image.png

Understanding the Molecular Mechanisms of TRP Channel Activity

Description

Transient receptor potential (TRP) channels are a diverse family of polymodally gated nonselective cation channels implicated in a variety of pathophysiologies. Two channels of specific interest are transient receptor potential

Transient receptor potential (TRP) channels are a diverse family of polymodally gated nonselective cation channels implicated in a variety of pathophysiologies. Two channels of specific interest are transient receptor potential melastatin 8 (TRPM8) and transient receptor potential vanilloid 1 (TRPV1).
TRPM8 is the primary cold sensor in humans and is activated by ligands that feel cool such as menthol and icilin. It is implicated to be involved in a variety of cancers, nociception, obesity, addiction, and thermosensitivity. There are thought to be conserved regions of structural and functional importance to the channel which can be identified by looking at the evolution of TRPM8 over time. Along with this, looking at different isoforms of TRPM8 which are structurally very different but functionally similar can help isolate regions of functional interest as well. Between TRP channels, the transmembrane domain is well conserved and thought to be important for sensory physiology. To learn about these aspects of TRPM8, three evolutionary constructs, the last common primate, the last common mammalian, and the last common vertebrate ancestor TRPM8 were cloned and subjected to preliminary studies. In addition to the initial ancestral TRPM8 studies, fundamental studies were initiated in method development to evaluate the use of biological signaling sequences to attempt to force non-trafficking membrane protein isoforms and biophysical constructs to the plasma membrane. To increase readout for these and other studies, a cellular based fluorescence assay was initiated. Eventual completion of these efforts will lead to better understanding of the mechanism that underlie TRPM8 function and provide enhanced general methods for ion channel studies.
Beyond TRPM8 studies, an experiment was designed to probe mechanistic features of TRPV1 ligand activation. TRPV1 is also a thermosensitive channel in the TRP family, sensing heat and vanilloid ligands like capsaicin, commonly found in chili peppers. This channel is also involved in many proinflammatory interactions and associated with cancers, nociception, and addiction. Better understanding binding interactions can lead to attempts to create therapeutics.

Contributors

Agent

Created

Date Created
  • 2020-05

155278-Thumbnail Image.png

Nuclear magnetic resonance (NMR) spectroscopic characterization of nanomaterials and biopolymers

Description

Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed

Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles.

Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a β-sheet or α-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix confirmation. In addition, the conformations of the Ala, Ser, and Tyr residues in silk fibroin of B. mori were investigated and it indicates that the Ala, Ser, and Tyr residues are all present in disordered structures in silk I (before spinning), while show different conformations in silk II (after spinning). Specifically, in silk II, the Ala and Tyr residues are present in both disordered structures and β-sheet structures, and the Ser residues are present primarily in β-sheet structures.

Contributors

Agent

Created

Date Created
  • 2017

153946-Thumbnail Image.png

Identification of structural mechanisms that modulate glycosaminoglycan affinity in various strains of decorin binding protein A

Description

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.

Contributors

Agent

Created

Date Created
  • 2015

152317-Thumbnail Image.png

NMR studies of MRI contrast agents and cementitous materials

Description

Nuclear magnetic resonance (NMR) is an important phenomenon involving nuclear magnetic moments in magnetic field, which can provide much information about a wide range of materials, including their chemical composition,

Nuclear magnetic resonance (NMR) is an important phenomenon involving nuclear magnetic moments in magnetic field, which can provide much information about a wide range of materials, including their chemical composition, chemical environments and nuclear spin interactions. The NMR spectrometer has been extensively developed and used in many areas of research. In this thesis, studies in two different areas using NMR are presented. First, a new kind of nanoparticle, Gd(DTPA) intercalated layered double hydroxide (LDH), has been successfully synthesized in the laboratory of Prof. Dey in SEMTE at ASU. In Chapter II, the NMR relaxation studies of two types of LDH (Mg, Al-LDH and Zn, Al-LDH) are presented and the results show that when they are intercalated with Gd(DTPA) they have a higher relaxivity than current commercial magnetic resonance imaging (MRI) contrast agents, such as DTPA in water solution. So this material may be useful as an MRI contrast agent. Several conditions were examined, such as nanoparticle size, pH and intercalation percentage, to determine the optimal relaxivity of this nanoparticle. Further NMR studies and simulations were conducted to provide an explanation for the high relaxivity. Second, fly ash is a kind of cementitious material, which has been of great interest because, when activated by an alkaline solution, it exhibits the capability for replacing ordinary Portland cement as a concrete binder. However, the reaction of activated fly ash is not fully understood. In chapter III, pore structure and NMR studies of activated fly ash using different activators, including NaOH and KOH (4M and 8M) and Na/K silicate, are presented. The pore structure, degree of order and proportion of different components in the reaction product were obtained, which reveal much about the reaction and makeup of the final product.

Contributors

Agent

Created

Date Created
  • 2013

150627-Thumbnail Image.png

Characterizing pressure induced structural changes in glasses and liquids

Description

The behaviors of various amorphous materials are characterized at high pressures to deduce phase transitions, coordination changes, densification, and other structural or electronic alterations in the system. Alongside, improvements on

The behaviors of various amorphous materials are characterized at high pressures to deduce phase transitions, coordination changes, densification, and other structural or electronic alterations in the system. Alongside, improvements on high pressure techniques are presented to measure equations of state of glassy materials and probe liquids using in-situ high resolution nuclear magnetic resonance (NMR) spectroscopy. 27Al NMR is used to quantify coordination changes in CaAl2O4 glass pressure cycled to 16 GPa. The structure and coordination environments remain unchanged up to 8 GPa at which 93% of the recovered glass exists as 4-fold Al, whereas the remaining population exists as [5,6]Al. Upon densification, [5,6]Al comprise nearly 30% of observed Al, most likely through the generation of 3-coordinated oxygen. A method to determine the volumetric equation of state of amorphous solids using optical microscopy in a diamond anvil cell is also described. The method relies on two dimensional image acquisition and analysis to quantify changes in the projected image area with compression. The area analysis method is used to determine the compression of cubic crystals, yielding results in good agreement with diffraction and volumetric measurements. A NMR probe capable of reaching 3 GPa is built to understand the nature of magnetic field gradients and improve upon the resolution of high pressure studies conducted in a diamond anvil cell. Field gradients in strength up to 6 G/cm are caused largely by mismatches in the magnetic susceptibility between the sample and gasket, which is proven to shift the chemical shift distribution by use of several different metallic gaskets. Polyamorphic behavior in triphenyl phosphite is studied at pressures up to 0.7 GPa to elucidate the formation of the glacial phase at high pressures. A perceived liquid-liquid phase transition is shown to follow a positive Clapeyron slope, and closely follows the predicted glass transition line up to 0.4 GPa and temperatures below 270 K. A drastic change in morphology is indicative of a transformation from liquid I to liquid II and followed by optical microscopy.

Contributors

Agent

Created

Date Created
  • 2012

149817-Thumbnail Image.png

Characterization of carbonaceous aerosol over the north Atlantic Ocean

Description

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.

Contributors

Agent

Created

Date Created
  • 2011