Matching Items (4)
Filtering by

Clear all filters

151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014
136680-Thumbnail Image.png
Description
Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic

Understanding damage evolution, particularly as it relates to local nucleation and growth kinetics of spall failure in metallic materials subjected to shock loading, is critical to national security. This work uses computational modeling to elucidate what characteristics have the highest impact on damage localization at the microstructural level in metallic materials, since knowledge of these characteristics is critical to improve these materials. The numerical framework consists of a user-defined material model implemented in a user subroutine run in ABAQUS/Explicit that takes into account crystal plasticity, grain boundary effects, void nucleation and initial growth, and both isotropic and kinematic hardening to model incipient spall. Finite element simulations were performed on copper bicrystal models to isolate the boundary effects between two grains. Two types of simulations were performed in this work: experimentally verified cases in order to validate the constitutive model as well as idealized cases in an attempt to determine the microstructural characteristic that define weakest links in terms of spall damage. Grain boundary effects on damage localization were studied by varying grain boundary orientation in respect to the shock direction and the crystallographic properties of each grain in the bicrystal. Varying these parameters resulted in a mismatch in Taylor factor across the grain boundary and along the shock direction. The experimentally verified cases are models of specific damage sites found from flyer plate impact tests on copper multicrystals in which the Taylor factor mismatch across the grain boundary and along the shock direction are both high or both low. For the idealized cases, grain boundary orientation and crystallography of the grains are chosen such that the Taylor factor mismatch in the grain boundary normal and along the shock direction are maximized or minimized. A perpendicular grain boundary orientation in respect to the shock direction maximizes Taylor factor mismatch, while a parallel grain boundary minimizes the mismatch. Furthermore, it is known that <1 1 1> crystals have the highest Taylor factor, while <0 0 1> has nearly the lowest Taylor factor. The permutation of these extremes for mismatch in the grain boundary normal and along the shock direction results in four idealized cases that were studied for this work. Results of the simulations demonstrate that the material model is capable of predicting damage localization, as it has been able to reproduce damage sites found experimentally. However, these results are qualitative since further calibration is still required to produce quantitatively accurate results. Moreover, comparisons of results for void nucleation rate and void growth rate suggests that void nucleation is more influential in the total void volume fraction for bicrystals with high property mismatch across the interface, suggesting that nucleation is the dominant characteristic in the propagation of damage in the material. Further work in recalibrating the simulation parameters and modeling different bicrystal orientations must be done to verify these results.
ContributorsVo, Johnathan Hiep (Author) / Peralta, Pedro (Thesis director) / Oswald, Jay (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
135275-Thumbnail Image.png
Description
In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.
ContributorsVotroubek, Edward Daniel (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05