Matching Items (4)
Filtering by

Clear all filters

152594-Thumbnail Image.png
Description
The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits

The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits that are easily identified or tracked. Indeed it has been shown that patients with enduring symptoms have difficulty describing their problems; therefore, there is an urgent need for a sensitive measure of brain activity that corresponds with higher order cognitive processing. The development of a neurophysiological metric that maps to clinical resolution would inform decisions about diagnosis and prognosis, including the need for clinical intervention to address cognitive deficits. The literature suggests the need for assessment of concussion under cognitively demanding tasks. Here, a joint behavioral- high-density electroencephalography (EEG) paradigm was employed. This allows for the examination of cortical activity patterns during speech comprehension at various levels of degradation in a sentence verification task, imposing the need for higher-order cognitive processes. Eight participants with concussion listened to true-false sentences produced with either moderately to highly intelligible noise-vocoders. Behavioral data were simultaneously collected. The analysis of cortical activation patterns included 1) the examination of event-related potentials, including latency and source localization, and 2) measures of frequency spectra and associated power. Individual performance patterns were assessed during acute injury and a return visit several months following injury. Results demonstrate a combination of task-related electrophysiology measures correspond to changes in task performance during the course of recovery. Further, a discriminant function analysis suggests EEG measures are more sensitive than behavioral measures in distinguishing between individuals with concussion and healthy controls at both injury and recovery, suggesting the robustness of neurophysiological measures during a cognitively demanding task to both injury and persisting pathophysiology.
ContributorsUtianski, Rene (Author) / Liss, Julie M (Thesis advisor) / Berisha, Visar (Committee member) / Caviness, John N (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153418-Thumbnail Image.png
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
134531-Thumbnail Image.png
Description
Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully

Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully comprehend what it takes to have success in these classes. We found that the anatomy books recommended for these courses are often completely overwhelming, offering way more information than what is needed. This renders them near useless for a college student who just wants to learn the essentials. Why would a student even pick it up if they can't find what they need to learn? With that in mind, our goal was to create a comprehensive, easy to understand, and easy to follow guide to the heart, lungs and ENT (ear nose throat). We know what information is vital for test day, and wanted to highlight these key concepts and ideas in our guide. Spending just 60 to 90 minutes studying our guide should help any student with their studying needs. Whether the student has medical school aspirations, or if they simply just want to pass the class, our guide is there for them. We aren't experts, but we know what strategies and methods can help even the most confused students learn. Our guide can also be used as an introductory resource to our respective majors (Daniel-Biology, Charles-Speech and Hearing) for students who are undecided on what they want to do. In the future Daniel and I would like to see more students creating similar guides, and adding onto the "Student to Student' title with their own works... After all, who better to teach students than the students who know what it takes?
ContributorsKennedy, Charles (Co-author) / McDermand, Daniel (Co-author) / Kingsbury, Jeffrey (Thesis director) / Washo-Krupps, Delon (Committee member) / Department of Speech and Hearing Science (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05