Matching Items (4)
Filtering by

Clear all filters

135641-Thumbnail Image.png
Description
Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers experience a different passage of time as the universe ensures

Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers experience a different passage of time as the universe ensures the commonality of the speed of light in all reference frames. In the here and now, this method of travel has been proposed to assist in interstellar and interplanetary exploration. This paper will investigate the practicality of this method of travel by proposing a mission utilizing a craft with this type of velocity.
ContributorsWaaler, Mason Duran (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir

Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir Observatory in Baja, CA, MX with high sensitivity in order to study these events at a high redshift. Due to how quickly GRBs occur, it is essential to develop an image reduction pipeline that can quickly and accurately detect these events. Using existing image reduction software from Coatli, which was programmed and optimized for speed using python, numerous time trials were performed in order to determine if the pipeline meets the time requirements with various factors being adjusted. The goal of this experiment is for the telescope to respond to, capture, and reduce the images in under 3 minutes. It was determined that the reduction was optimized when the number of files to be reduced was set equal to 16 or higher by changing the batch number and the blank sky subtraction function was performed. As for the number of exposures, one can take up to four 30 second exposures or twenty 5 second exposures and reduce them in under 3 minutes.
ContributorsHeiligenstein, Wren (Author) / Butler, Nathaniel (Thesis director) / Jansen, Rolf (Committee member) / Dimitrova, Tzvetelina (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05
131302-Thumbnail Image.png
Description
This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space travel. By utilizing technology that has already been used in space travel and implementing the use of technology that is successful on Earth, humans will be able to live on Mars successfully.
ContributorsWebber, Kaitlin Brooke (Author) / Culbertson, Robert (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05