Matching Items (7)
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151328-Thumbnail Image.png
Description
Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing

Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing vent density to similar provinces such as the Snake River Plains of Idaho and Syria Planum and determining absolute age relationships among the volcanic features. Crater size-frequency distribution model ages of 120 Ma to 2.4 Ga indicate the province has been active for over half of the planet's history. During that time, age decreases from southwest to northeast, a trend that parallels the dominant orientation of faulting in the region, providing further evidence that volcanic activity in the region is tectonically controlled (or the tectonics is magmatically controlled). Morphological variation with age hints at an evolving magma source (increasing viscosity) or changing eruption conditions (decreasing eruption rate or eruption through thicker lithosphere).
ContributorsManfredi, Leon (Author) / Clarke, Amanda B (Thesis advisor) / Williams, David A. (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2012
153231-Thumbnail Image.png
Description
Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify 63 small localized areas within the classical bright dusty regions of Arabia Terra, Elysium Planitia, and Tharsis as potential "windows" through the dust; that is, areas where the dust cover is thin enough to permit infrared remote sensing of the underlying bedrock. The bedrock mineralogy of each candidate "window" was inferred using processed spectra from the Mars Express (MEx) Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) NIR spectrometer and, where possible, TES. 12 areas of interest returned spectra that are consistent with mineral species expected to be present at the regional scale, such as high- and low-calcium pyroxene, olivine, and iron-bearing glass. Distribution maps were created using previously defined index parameters for each species present within an area. High-quality TES spectra, if present within an area of interest, were deconvolved to estimate modal mineralogy and support NIR results. OMEGA data from Arabia Terra and Elysium Planitia are largely similar and indicate the presence of high-calcium pyroxene with significant contributions of glass and olivine, while TES data suggest an intermediate between the established southern highlands and Syrtis Major compositions. Limited data from Tharsis indicate low-calcium pyroxene mixed with lesser amounts of high-calcium pyroxene and perhaps glass. TES data from southern Tharsis correlate well with the previously inferred compositions of the Aonium and Mare Sirenum highlands immediately to the south.
ContributorsLai, Jason Chi-Shun (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2014
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
155854-Thumbnail Image.png
Description
Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of ~350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area

Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of ~350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history.

A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano.

Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars.
ContributorsMohr, Kyle James (Author) / Williams, David A. (Thesis advisor) / Christensen, Phil R (Thesis advisor) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2017
157720-Thumbnail Image.png
Description
In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart

In this thesis, I investigate possible formation processes in the northern Claritas Fossae and the large Thaumasia graben on Mars. In particular, I assess three proposed formation hypotheses for the region: a mega-landslide across the Thaumasia plateau, originating in Tharsis and moving to the south-west; a rift system pulling apart Claritas Fossae and opening the large Thaumasia graben generally propagating in a north-south direction: and extension caused by uplifting from underlying dike swarms. Using digital terrain models (DTMs) from the High Resolution Stereo Camera (HRSC) aboard Mars Express and visual images from the Context Camera (CTX) aboard the Mars Reconnaissance Orbiter (MRO), I analyzed the geomorphic and structural context of the region. Specifically, I produced geomorphologic and structural feature maps, conducted sector diagram analyses of fault propagation direction, calculated and compared extension and strain in local and regional samples, analyzed along strike throw-profiles of faults, and conducted surface age estimates through crater counting. I found that no single formation mechanism fully explains the surface features seen in Northern Claritas Fossae today. Instead I, propose the following sequence of events led to the surface characteristics we now observe. The region most likely underwent two episodes of uplift and extension due to sub-surface magmatic intrusions, then experienced an extensional event which produced the large Thaumasia graben. This was followed by the emplacement of a layer of lava burying the bottom of the Thaumasia graben and the eastern edge of the region. Additional extension followed across the eastern portion of the study area, and finally of a young lava flow was emplaced abutting and overprinting the southwestern edge.
ContributorsStuder-Ellis, Genevieve Lynn (Author) / Williams, David A. (Thesis advisor) / Christensen, Philip R. (Thesis advisor) / Arrowsmith, J. R. (Committee member) / Arizona State University (Publisher)
Created2019
132747-Thumbnail Image.png
Description
This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.
ContributorsRobinson, Jenna (Author) / Desch, Steven (Thesis director) / Hervig, Richard (Committee member) / School of Earth and Space Exploration (Contributor) / School for the Future of Innovation in Society (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05