Matching Items (8)
Filtering by

Clear all filters

132804-Thumbnail Image.png
Description
A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.
ContributorsKhuller, Aditya Rai (Author) / Christensen, Philip (Thesis director) / Harrison, Tanya (Committee member) / Diniega, Serina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133049-Thumbnail Image.png
Description
This thesis presents the moral and ethical controversy surrounding the possibility of terraforming Mars and provides an overview of the 5 characteristics of Mars that can kill you – radiation, low atmospheric pressure, carbon dioxide, freezing temperatures, and dust – should man embark on the journey. It presents these issues

This thesis presents the moral and ethical controversy surrounding the possibility of terraforming Mars and provides an overview of the 5 characteristics of Mars that can kill you – radiation, low atmospheric pressure, carbon dioxide, freezing temperatures, and dust – should man embark on the journey. It presents these issues in written form, by storyboard, extensive graphics, and in a WIKI.

Ethical Considerations: The thesis presents the three main threads of thought regarding terraforming – that we should because it is there and man – superior to all other forms of life – wants challenges; that we should not since we are not superior to other forms of life and have no right; and the middle position – that we should be able to terraform Mars only if we clean up our act on Earth first. This is the point of view taken by the author of the thesis.

5 Ways Mars Can Kill You: the essay portion of the thesis is an overview of the research regarding the main obstacles to terraforming Mars and potential solutions.

Storyboard: Depicts the ethical efforts one must achieve before traveling to Mars as well as the process of terraforming – all images in chronological order.

Graphics: A series of Illustrator/Photoshop graphics moves the reader through the problems we have here on Earth that must be solved before terraforming, the process of getting to Mars and the activities involved in making her inhabitable for man.

WIKI: The WIKI showcases thesis material in a more interactive manner. JavaScript animations run throughout the WIKI and the user is able to create posts within the website – which acts as a forum.
ContributorsHoulihan, Kyle (Author) / Moran, Stacey (Thesis director) / Finn, Ed (Committee member) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir

Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir Observatory in Baja, CA, MX with high sensitivity in order to study these events at a high redshift. Due to how quickly GRBs occur, it is essential to develop an image reduction pipeline that can quickly and accurately detect these events. Using existing image reduction software from Coatli, which was programmed and optimized for speed using python, numerous time trials were performed in order to determine if the pipeline meets the time requirements with various factors being adjusted. The goal of this experiment is for the telescope to respond to, capture, and reduce the images in under 3 minutes. It was determined that the reduction was optimized when the number of files to be reduced was set equal to 16 or higher by changing the batch number and the blank sky subtraction function was performed. As for the number of exposures, one can take up to four 30 second exposures or twenty 5 second exposures and reduce them in under 3 minutes.
ContributorsHeiligenstein, Wren (Author) / Butler, Nathaniel (Thesis director) / Jansen, Rolf (Committee member) / Dimitrova, Tzvetelina (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05
132143-Thumbnail Image.png
Description
Recurring Slope Lineae (RSL) are dark, narrow features which form on steep Martian slopes during warm seasons, lengthening, fade in cold seasons and recurring annually. There are many hypotheses on the formation mechanism of RSL. A number of these hypotheses suggest that RSL are liquid brines flowing on the surface.

Recurring Slope Lineae (RSL) are dark, narrow features which form on steep Martian slopes during warm seasons, lengthening, fade in cold seasons and recurring annually. There are many hypotheses on the formation mechanism of RSL. A number of these hypotheses suggest that RSL are liquid brines flowing on the surface. Brine based hypotheses often state that sub-surface aquifers are necessary to supply the water needed to recharge RSL. One problem with this is that RSL are observed forming on isolated peaks and ridgelines where a sub-surface aquifer is unlikely. This study uses a thermal model called KRC to examine the correlation between RSL activity and surface temperature at several RSL sites in Valles Marineris. This correlation is compared to the freezing temperature of several brines. Results show an interesting relationship between RSL activity and the surface temperature of very steep (> 60º) slopes. This could indicate that RSL are caused by thermal stresses loosening material on the face of bedrock outcroppings instead of briny flows.
ContributorsPatterson, Bradley (Author) / Christensen, Phil (Thesis director) / Piqueux, Slyvain (Committee member) / Ruff, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131593-Thumbnail Image.png
Description
To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a

To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a high level one such agricultural system, specifically examining the requirements and flow of Nitrogen, Phosphorus and Potassium required to sustain a given human colony size. We developed a Microsoft Excel based model that relates human nutritional needs to the amount available in food crops and in turn the amount of Martian soil required for agriculture. The model works by inputting the number of humans, and then utilizing the built-in calculations and datasets to determine how much of each nutrient is needed to meet all nutritional needs of the colony. Using that information, it calculates the amount of plants needed to supply the nutrition and then calculates the amount of nutrients that would be taken from the soil. It compares the Martian regolith to the nutrient uptake, accounting for inedible biomass from the plants and human waste that can be added to the regolith. Any deficiencies are used to determine if and how much fertilizer should be added to the system initially and over time. Using the total amount of plants and the number of harvests, the amount of Martian land required for sustaining the colony is computed. These results can be used as a building block to enable the successful design of an agricultural system on Mars.
ContributorsGarland, Michael (Co-author) / Zinke, Sarah (Co-author) / Muenich, Rebecca (Thesis director) / Perreault, Francois (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131302-Thumbnail Image.png
Description
This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space travel. By utilizing technology that has already been used in space travel and implementing the use of technology that is successful on Earth, humans will be able to live on Mars successfully.
ContributorsWebber, Kaitlin Brooke (Author) / Culbertson, Robert (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132747-Thumbnail Image.png
Description
This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.
ContributorsRobinson, Jenna (Author) / Desch, Steven (Thesis director) / Hervig, Richard (Committee member) / School of Earth and Space Exploration (Contributor) / School for the Future of Innovation in Society (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05