Matching Items (32)

132143-Thumbnail Image.png

Brine Stability at Recurring Slope Lineae in Valles Marineris, Mars

Description

Recurring Slope Lineae (RSL) are dark, narrow features which form on steep Martian slopes during warm seasons, lengthening, fade in cold seasons and recurring annually. There are many hypotheses on

Recurring Slope Lineae (RSL) are dark, narrow features which form on steep Martian slopes during warm seasons, lengthening, fade in cold seasons and recurring annually. There are many hypotheses on the formation mechanism of RSL. A number of these hypotheses suggest that RSL are liquid brines flowing on the surface. Brine based hypotheses often state that sub-surface aquifers are necessary to supply the water needed to recharge RSL. One problem with this is that RSL are observed forming on isolated peaks and ridgelines where a sub-surface aquifer is unlikely. This study uses a thermal model called KRC to examine the correlation between RSL activity and surface temperature at several RSL sites in Valles Marineris. This correlation is compared to the freezing temperature of several brines. Results show an interesting relationship between RSL activity and the surface temperature of very steep (> 60º) slopes. This could indicate that RSL are caused by thermal stresses loosening material on the face of bedrock outcroppings instead of briny flows.

Contributors

Agent

Created

Date Created
  • 2019-05

132747-Thumbnail Image.png

Characterizing Diurnal Density and Temperature Variations in the Martian Atmosphere Using Data/Model Comparisons

Description

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8.

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.

Contributors

Created

Date Created
  • 2019-05

131593-Thumbnail Image.png

MODELING OF LONG-TERM RECLAMATION PROCESSES ON MARTIAN REGOLITH FOR SUSTAINABLE MARTIAN AGRICULTURE

Description

To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a

To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a high level one such agricultural system, specifically examining the requirements and flow of Nitrogen, Phosphorus and Potassium required to sustain a given human colony size. We developed a Microsoft Excel based model that relates human nutritional needs to the amount available in food crops and in turn the amount of Martian soil required for agriculture. The model works by inputting the number of humans, and then utilizing the built-in calculations and datasets to determine how much of each nutrient is needed to meet all nutritional needs of the colony. Using that information, it calculates the amount of plants needed to supply the nutrition and then calculates the amount of nutrients that would be taken from the soil. It compares the Martian regolith to the nutrient uptake, accounting for inedible biomass from the plants and human waste that can be added to the regolith. Any deficiencies are used to determine if and how much fertilizer should be added to the system initially and over time. Using the total amount of plants and the number of harvests, the amount of Martian land required for sustaining the colony is computed. These results can be used as a building block to enable the successful design of an agricultural system on Mars.

Contributors

Agent

Created

Date Created
  • 2020-05

133049-Thumbnail Image.png

Mars Project

Description

This thesis presents the moral and ethical controversy surrounding the possibility of terraforming Mars and provides an overview of the 5 characteristics of Mars that can kill you – radiation,

This thesis presents the moral and ethical controversy surrounding the possibility of terraforming Mars and provides an overview of the 5 characteristics of Mars that can kill you – radiation, low atmospheric pressure, carbon dioxide, freezing temperatures, and dust – should man embark on the journey. It presents these issues in written form, by storyboard, extensive graphics, and in a WIKI.

Ethical Considerations: The thesis presents the three main threads of thought regarding terraforming – that we should because it is there and man – superior to all other forms of life – wants challenges; that we should not since we are not superior to other forms of life and have no right; and the middle position – that we should be able to terraform Mars only if we clean up our act on Earth first. This is the point of view taken by the author of the thesis.

5 Ways Mars Can Kill You: the essay portion of the thesis is an overview of the research regarding the main obstacles to terraforming Mars and potential solutions.

Storyboard: Depicts the ethical efforts one must achieve before traveling to Mars as well as the process of terraforming – all images in chronological order.

Graphics: A series of Illustrator/Photoshop graphics moves the reader through the problems we have here on Earth that must be solved before terraforming, the process of getting to Mars and the activities involved in making her inhabitable for man.

WIKI: The WIKI showcases thesis material in a more interactive manner. JavaScript animations run throughout the WIKI and the user is able to create posts within the website – which acts as a forum.

Contributors

Agent

Created

Date Created
  • 2018-12

131302-Thumbnail Image.png

Analyzing the Challenges and Solutions of Living on Mars

Description

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space travel. By utilizing technology that has already been used in space travel and implementing the use of technology that is successful on Earth, humans will be able to live on Mars successfully.

Contributors

Agent

Created

Date Created
  • 2020-05

132804-Thumbnail Image.png

INVESTIGATING THE DISTRIBUTION OF FROSTS IN RELATION TO PRESENT-DAY GULLY ACTIVITY ON MARS

Description

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al.,

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.

Contributors

Agent

Created

Date Created
  • 2019-05

153231-Thumbnail Image.png

Assessing martian bedrock mineralogy through "windows" in the dust using near- and thermal infrared remote sensing

Description

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify 63 small localized areas within the classical bright dusty regions of Arabia Terra, Elysium Planitia, and Tharsis as potential "windows" through the dust; that is, areas where the dust cover is thin enough to permit infrared remote sensing of the underlying bedrock. The bedrock mineralogy of each candidate "window" was inferred using processed spectra from the Mars Express (MEx) Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) NIR spectrometer and, where possible, TES. 12 areas of interest returned spectra that are consistent with mineral species expected to be present at the regional scale, such as high- and low-calcium pyroxene, olivine, and iron-bearing glass. Distribution maps were created using previously defined index parameters for each species present within an area. High-quality TES spectra, if present within an area of interest, were deconvolved to estimate modal mineralogy and support NIR results. OMEGA data from Arabia Terra and Elysium Planitia are largely similar and indicate the presence of high-calcium pyroxene with significant contributions of glass and olivine, while TES data suggest an intermediate between the established southern highlands and Syrtis Major compositions. Limited data from Tharsis indicate low-calcium pyroxene mixed with lesser amounts of high-calcium pyroxene and perhaps glass. TES data from southern Tharsis correlate well with the previously inferred compositions of the Aonium and Mare Sirenum highlands immediately to the south.

Contributors

Agent

Created

Date Created
  • 2014

151696-Thumbnail Image.png

High-resolution Martian soil thickness derived from yearly surface temperatures

Description

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.

Contributors

Agent

Created

Date Created
  • 2013

154973-Thumbnail Image.png

Wind-driven modification of small bedforms in Gusev Crater, Mars

Description

ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The

ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years.

Small fields of bedforms comprised of dark material, and dark dust devil tracks are among the features revealed in the images. The bedforms are constrained within craters on the plains, and unconstrained in depressions less than 200m wide within the topography of the Columbia Hills, a ~120m-high structure in center of Gusev. Dust devil tracks appear in many images of the bedforms.

Within the Columbia Hills, three bedform fields approximately 180m2 and composed of fine dark basaltic sand were studied, using five HiRISE images taken from 2006 to 2014. Both bedform crests and the dust devil tracks superimposed on them were evaluated for change to azimuth and length, and for correlation between the features. The linear to slightly sinuous transverse crests ranging from less than 1m to 113m in length and two to three meters in wavelength, are primary bedforms. During the study they shifted as much as 33 degrees in azimuth, and individual crests moved on the surface as much as 0.75m. The greatest changes corresponded to a global dust storm in 2007. Average crest movement was documented at the rate of 0.25m per year. Rather than moving progressively, the crests eventually returned to near their original orientation after the storm. The dust devil tracks, reflecting a more complex wind regime, including vortex development during diurnal heating, maintained predominantly NW-SE orientations but also reflected the effects of the storm.

The observed modifications were neither progressive, nor strictly seasonal. The apparent stability of the bedform geometry over four seasons supports the predictions of the Mars Regional Atmospheric Modeling System (MRAMS): low speed (1-7.5 ms-1), daily alternating winds of relatively equal force. Crest profiles were found to be nearly symmetrical, without slipfaces to indicate a preferential wind direction; this finding also is supported by the MRAMS model.

Contributors

Agent

Created

Date Created
  • 2016

156391-Thumbnail Image.png

Heat and mass transfer on planetary surfaces

Description

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith particles, such as particle size, sorting, composition, and shape. Radiometric temperature measurements thus provide the means to determine regolith properties and rock abundance from afar. However, heat conduction through a matrix of irregular particles is a complicated physical system that is strongly influenced by temperature and atmospheric gas pressure. A series of new regolith thermal conductivity experiments were conducted under realistic planetary surface pressure and temperature conditions. A new model is put forth to describe the radiative, solid, and gaseous conduction terms of regolith on Earth, Mars, and airless bodies. These results will be used to infer particle size distribution from temperature measurements of the primitive asteroid Bennu to aid in OSIRIS-REx sampling site selection. Moving up in scale, fluvial processes are extremely influential in shaping Earth's surface and likely played an influential role on ancient Mars. Amphitheater-headed canyons are found on both planets, but conditions necessary for their development have been debated for many years. A spatial analysis of canyon form distribution with respect to local stratigraphy at the Escalante River and on Tarantula Mesa, Utah, indicates that canyon distribution is most closely related to variations in local rock strata, rather than groundwater spring intensity or climate variations. This implies that amphitheater-headed canyons are not simple markers of groundwater seepage erosion or megaflooding. Finally, at the largest scale, volcanism has significantly altered the surface characteristics of Earth and Mars. A field campaign was conducted in Hawaii to investigate the December 1974 Kilauea lava flow, where it was found that lava coils formed in an analogous manner to those found in Athabasca Valles, Mars. The location and size of the coils may be used as indicators of local effusion rate, viscosity, and crustal thickness.

Contributors

Agent

Created

Date Created
  • 2018