Matching Items (2)
Filtering by

Clear all filters

132197-Thumbnail Image.png
Description
All multicellular organisms are susceptible to developing cancer, but some organisms have varying sensitivities to the disease. One such organism is the Trichoplax adhaerens which has no documented case of cancer development. T. adhaerens cancer resistance was studied by observing physiological and morphological changes of the organism after radiation treatment.

All multicellular organisms are susceptible to developing cancer, but some organisms have varying sensitivities to the disease. One such organism is the Trichoplax adhaerens which has no documented case of cancer development. T. adhaerens cancer resistance was studied by observing physiological and morphological changes of the organism after radiation treatment. Preliminary experiments suggested that this organism is able to survive exposure to 160 gray radiation treatment almost as well as untreated organisms. The T. adhaerens have two genes, TriadG6402 and TriadG5479, similar to the human genes TP53 and MDM2 respectively. TP53 and MDM2 are the two main genes associated with apoptosis in humans: an important cell regulatory checkpoint involved in cancer prevention. PCR analysis, done after radiation treatment, showed an overexpression of the ortholog gene MDM2 in the T. adhaerens. This may suggest that T. adhaerens block apoptosis from occurring and that their ortholog gene is involved in DNA repair. It is significant to study the gene expression of TriadG6402 and TriadG54791 in T. adhaerens because these genes are well conserved in humans. Future studies of these genes in the T. adhaerens can be used to understand the evolution of the function of these genes in more complex organisms and be used for human cancer prevention.
ContributorsKulkarni, Arathi (Author) / Fortunato, Angelo (Thesis director) / Maley, Carlo (Committee member) / Department of Economics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131298-Thumbnail Image.png
Description
Macrostomum lignano is characterized by its elevated regenerative ability conferred by its high percentage of stem cells (the highest recorded for any animal). M. lignano is already used as a model organism for addressing fundamental questions of stem cell biology, aging, regeneration, and reproduction, but not yet cancer.
M. lignano larvae

Macrostomum lignano is characterized by its elevated regenerative ability conferred by its high percentage of stem cells (the highest recorded for any animal). M. lignano is already used as a model organism for addressing fundamental questions of stem cell biology, aging, regeneration, and reproduction, but not yet cancer.
M. lignano larvae were isolated into separate wells of 24-well plates. After reaching maturity (30 days), the experimental plates were exposed to 5 Gys of X-rays every 4 days for a total of a 25 Gy exposure. We observed phenotypes that may be attributed to the acute effect of irradiation (e.g. blisters) but we recorded two types of phenotypes that may be a result of long-term effects of exposure to radiation. We observed enlarged testis and dark regions/masses that appeared statistically significantly more frequently in the treated animals (Fisher exact test, p=0.0026). Preliminary histological analyses of the enlarged testis suggest a benign testis enlargement due to an aberrant growth of the testes and an accumulation of aberrant spermatozoa. Importantly, we found that, similar to cancer, the dark masses can grow in size over time and the histological analysis confirms that the observed masses are composed of cells completely different from surrounding normal cells. Notably, we observed that those masses can develop and then completely disappear through an observed method of ejection. M. lignano offer the unique possibility to study in vivo cancer development in a simple organism that can easily be cultured in the lab in large numbers.
ContributorsGerman, Adriana (Author) / Fortunato, Angelo (Thesis director) / Maley, Carlo (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05