Matching Items (2)
Filtering by

Clear all filters

151225-Thumbnail Image.png
Description
Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on

Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on gut fermentation. In this parallel arm randomized control trial, the effects of daily ingestion of vinegar on gut fermentation markers were observed among adults at risk for type 2 diabetes in Phoenix, Arizona. Subjects (n=14) were randomly assigned to treatments consisting of a vinegar drink (1.5g acetic acid) or a placebo (2 vinegar pills containing 40mg acetic acid each). All participants were required to consume the vinegar drink (16 oz) or 2 placebo pills every day for 12 weeks. At week 12, participants filled out a questionnaire to report gastrointestinal (GI) symptoms and three consecutive breath samples were taken from each subject to measure fasting breath hydrogen (BH2) with a breath analyzer. Fasting BH2 measures for the vinegar drink group (16.1+11.8 ppm) were significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.39 (p=0.023). After adjusting for age as a confounding factor (r=0.406) and removing an outlier, fasting BH2 measures for the vinegar drink group (4.3+1.1 ppm) were still significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.35 (p=0.045). Participants in both groups reported mild changes in GI symptoms. In conclusion, adults at risk for type 2 diabetes that consume 2 tablespoons of vinegar a day may have increased gut fermentation compared to those who do not consume vinegar.
ContributorsWhite, Serena (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Martin, Keith (Committee member) / Arizona State University (Publisher)
Created2013
131297-Thumbnail Image.png
Description
Northern peatland carbon cycling is under close observation and is critical to include in models projecting the future effects of climate change as these ecosystems represent a significant source of atmospheric methane (CH4). Changes in the in situ conditions, brought upon by the warming climate, could alter the rates of

Northern peatland carbon cycling is under close observation and is critical to include in models projecting the future effects of climate change as these ecosystems represent a significant source of atmospheric methane (CH4). Changes in the in situ conditions, brought upon by the warming climate, could alter the rates of organic matter decomposition and accelerate the emissions of greenhouse, changing northern peatland’s status as a carbon sink. In order to develop a better understanding of the climate’s effect on the microbial community composition, carbon decomposition cascade, and flux of CH4 and CO2, anoxic soil microcosms were supplemented with either glucose or propionate to test the distinct intermediary metabolism of four northern peatland sites with statistically similar geochemistry that exist across a climate gradient. Lutose (LT) and Bog Lake (BL) consumed the supplemented glucose at the highest rates, 42.6 mg/L per day and 39.5 mg/L per day respectively. Chicago Bog (CB) and Daring Lake (DL) consumed the supplemented propionate at the highest rates, 5.26 mg/L per day and 4.34 mg/L per day respectively. BL microcosms showed low levels of methanogenesis as CH4 concentrations reached a maximum of 2.61 µmol/g dry soil in the treatments. In DL, the site with the highest production of CH4, the low abundance of hydrogenotrophic methanogens (Methanocellaceae and Methanoregulaceae) and relatively steady concentrations of acetate and formate could indicate that these are the more desired methanogenic substrates. These findings are indicative of the differences in metabolic potential found across these geochemically similar peatlands, lending to climate variables being a major driver in microbial community potential. To further characterize the intermediary metabolism and the effect of the climate gradient in these sites, future experimentations should incorporate 13C DNA-stable isotope probing data, establish a mass balance of the system, and incubate the microcosms at their respective in situ temperatures.
ContributorsBourquin, Brandon Phillip (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Marcus, Andrew (Committee member) / Sarno, Analissa F. (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05