Matching Items (2)
Filtering by

Clear all filters

151225-Thumbnail Image.png
Description
Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on

Many people with or at risk for diabetes have difficulty maintaining normal postprandial blood glucose levels (120-140 mg/dl). Research has shown that vinegar decreases postprandial glycemia. The purpose of this study was to examine a possible mechanism by which vinegar decreases postprandial glycemia, particularly the effect of vinegar ingestion on gut fermentation. In this parallel arm randomized control trial, the effects of daily ingestion of vinegar on gut fermentation markers were observed among adults at risk for type 2 diabetes in Phoenix, Arizona. Subjects (n=14) were randomly assigned to treatments consisting of a vinegar drink (1.5g acetic acid) or a placebo (2 vinegar pills containing 40mg acetic acid each). All participants were required to consume the vinegar drink (16 oz) or 2 placebo pills every day for 12 weeks. At week 12, participants filled out a questionnaire to report gastrointestinal (GI) symptoms and three consecutive breath samples were taken from each subject to measure fasting breath hydrogen (BH2) with a breath analyzer. Fasting BH2 measures for the vinegar drink group (16.1+11.8 ppm) were significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.39 (p=0.023). After adjusting for age as a confounding factor (r=0.406) and removing an outlier, fasting BH2 measures for the vinegar drink group (4.3+1.1 ppm) were still significantly different than those from the pill group (3.6+1.4) with a partial eta squared of 0.35 (p=0.045). Participants in both groups reported mild changes in GI symptoms. In conclusion, adults at risk for type 2 diabetes that consume 2 tablespoons of vinegar a day may have increased gut fermentation compared to those who do not consume vinegar.
ContributorsWhite, Serena (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Martin, Keith (Committee member) / Arizona State University (Publisher)
Created2013
157944-Thumbnail Image.png
Description
Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions

Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions occurring among fermenters, lipid biohydrogenaters, and anode respiring bacteria (ARB) in ESF. The work begins by proving that ESF is effective in enhancing lipid wet-extraction from Scenedesmus acutus biomass, while also achieving “biohydrogenation” to produce saturated LCFAs. Increasing anode respiration effectively scavenges short chain fatty acids (SCFAs) generated by fermentation, reducing electron loss. However, the effectiveness of ESF depends on biochemical characteristics of the feeding biomass (FB). Four different FB batches yield different lipid-extraction performances, based on the composition of FB’s cellular structure. Finally, starting an ESF reactor with a long solid retention time (SRT), but then switching it to a short SRT provides high lipid extractability and volumetric production with low lipid los. Lipid fermenters can be flushed out with short a SRT, but starting with a short SRT fails achieve good results because fermenters needed to degrading algal protective layers also are flushed out and fail to recover when a long SRT is imposed. These results point to a potentially useful technology to harvest lipid from microalgae, as well as insight about how this technology can be best managed.
ContributorsLiu, Yuanzhen (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, César I (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2019