Matching Items (10)
Filtering by

Clear all filters

153046-Thumbnail Image.png
Description
This study examines the effectiveness of various types of alternative resources in organ building in order to determine whether a change to more sustainable materials would benefit or hinder the overall sound production of the instrument. The qualities of the metals and woods currently used in organ production (e.g. lead,

This study examines the effectiveness of various types of alternative resources in organ building in order to determine whether a change to more sustainable materials would benefit or hinder the overall sound production of the instrument. The qualities of the metals and woods currently used in organ production (e.g. lead, walnut, etc.) have been prized for centuries, so the substitution of different, more sustainable materials must be considered with regards to the sonic alterations, as well as the financial implications, of using alternatives to make the organ more “green.”



Five organ builders were interviewed regarding their views on sustainable materials. In addition, the author consulted the websites of nine national and four international organ builders for information about sustainability, indicating that each organ builder defines the term somewhat differently. Decisions on the woods and metals to be used in building or refurbishing an existing organ are based more on the visual appearance, the sound desired, and the potential for reuse of existing materials. A number of sustainability practices are currently in use by organ builders in the United States and Europe. These include the reuse of transportation boxes, efforts towards recycled metal and wood pipework, and the use of high efficiency lighting.

The investigations into sustainable practice that are presented here document a variety of approaches to sustainability in organ building in the United States, Canada and Europe. This research should assist in the evaluation of further efforts to conserve valuable resources while ensuring the high quality of sound that has characterized the organ throughout its long history.
ContributorsGregoire, Jonathan M (Author) / Marshall, Kimberly (Thesis advisor) / Feisst, Sabine (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2014
150192-Thumbnail Image.png
Description
In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods

In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods typically found in the Southwest. The LCA analysis presented in this study includes the assessment of more than 8,500 single family detached units, and 130 miles of related roadway infrastructure. The study estimates embedded and GHG emissions as a function of building size (1,500 - 3000 square feet), number of stories (1 or 2), and exterior wall material composition (stucco, brick, block, wood), roof material composition (clay tile, cement tile, asphalt shingles, built up), and as a function of roadway typology per mile (asphalt local residential roads, collectors, arterials). While a hybrid economic input-out life-cycle assessment is applied to estimate the energy and GHG emissions impacts of the residential units, the PaLATE tool is applied to determine the environmental effects of pavements and roads. The results indicate that low density single family neighborhoods are 2 - 2.5 X more energy and GHG intensive, per residential dwelling (unit) built, than high density residential neighborhoods. This relationship holds regardless of whether the functional unit is per acre or per capita. The results also indicate that a typical low density neighborhood (less than 2 dwellings per acre) requires 78 percent more energy and resource in roadway infrastructure per residential unit than a traditional small lot high density (more than 6 dwelling per acre). Also, this study shows that new master planned communities tend to be more energy intensive than traditional non master planned residential developments.
ContributorsFrijia, Stephane (Author) / Guhathakurta, Subhrajit (Committee member) / Williams, Eric D. (Committee member) / Pijawka, David K (Committee member) / Arizona State University (Publisher)
Created2011
156024-Thumbnail Image.png
Description
7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as

7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits for samples of multiple aging conditions and impurity concentrations. Additionally, chemical reactions between the 3.5 wt% NaCl solution and the crack surfaces were quantified by observing the evolution of hydrogen bubbles from the crack. The effects of the impurity particles and age-hardening particles on the corrosion and fatigue properties were examined in 4D.
ContributorsStannard, Tyler (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran N (Committee member) / Goswami, Ramasis (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2017
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135656-Thumbnail Image.png
Description
Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.
ContributorsBessant, Justin Zachary (Author) / Friesen, Cody (Thesis director) / Lorzel, Heath (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
135805-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as a mechanophore and thermosets are rarely studied in mechanochemistry, this created an alternative avenue for study in the field. Under an applied stress, the cyclooctane-rings in the Di-AC particles reverted back to their fluorescent anthracene form, which linearly enhanced the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allowed for stress sensing in the elastic region of the stress\u2014strain curve, which is considered to be a form of damage precursor detection. Overall, the incorporation of Di-AC to the epoxy matrix added much desired stress sensing and damage precursor detection capabilities with good retention of the material properties.
ContributorsWickham, Jason Alexander (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Koo, Bonsung (Co-author) / Chattopadhyay, Aditi (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
187840-Thumbnail Image.png
Description
ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge.

ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge. Although optical reflectance spectra, radar, and orbital dynamics can constrain an asteroid’s mineralogy and bulk density, in many cases there is not a clear or precise match with analogous materials such as meteorites. Additionally, the surfaces of asteroids and other small, airless planetary bodies can be heavily modified over geologic time by exposure to the space environment. To accurately interpret remote sensing observations of metal-rich asteroids, it is therefore necessary to understand how the processes active on asteroid surfaces affect metallic materials. This dissertation represents a first step toward that understanding. In collaboration with many colleagues, I have performed laboratory experiments on iron meteorites to simulate solar wind ion irradiation, surface heating, micrometeoroid bombardment, and high-velocity impacts. Characterizing the meteorite surface’s physical and chemical properties before and after each experiment can constrain the effects of each process on a metal-rich surface in space. While additional work will be needed for a complete understanding, it is nevertheless possible to make some early predictions of what (16) Psyche’s surface regolith might look like when humans observe it up close. Moreover, the results of these experiments will inform future exploration beyond asteroid Psyche as humans attempt to understand how Earth’s celestial neighborhood came to be.
ContributorsChristoph, John Morgan M. (Author) / Elkins-Tanton, Linda (Thesis advisor) / Williams, David (Committee member) / Dukes, Catherine (Committee member) / Sharp, Thomas (Committee member) / Bell III, James (Committee member) / Arizona State University (Publisher)
Created2023
131626-Thumbnail Image.png
Description
Ionic liquids boast a wide variety of application as modern electrolytes. Their unique collection of attributes, most notably insignificant vapor pressures, considerable ionic conductivity, and excellent thermal stability, prove ionic liquids excellent candidates for low-temperature electrolyte applications. This project focuses on the development of a low-temperature iodide-based ionic liquid electrolyte

Ionic liquids boast a wide variety of application as modern electrolytes. Their unique collection of attributes, most notably insignificant vapor pressures, considerable ionic conductivity, and excellent thermal stability, prove ionic liquids excellent candidates for low-temperature electrolyte applications. This project focuses on the development of a low-temperature iodide-based ionic liquid electrolyte for a molecular electronic transducer (MET) seismometer. Based on ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]), a functional electrolyte system is developed and optimized with addition of organic solvents, gamma-butyrolactone (GBL) and propylene carbonate (PC), and lithium iodide, showing the promise of operating at excessively low temperatures. The molecular interactions between [BMIM][I] and the organic solvents were classified using FTIR and 1H NMR spectroscopy. Specifically, the presence of hydrogen bonding between the carbonyl group on the organic solvents and the [BMIM]+ cation were captured. The effect of these interactions on several electrolyte properties were observed, including an extended glass transition temperature (Tg) of -120.2 °C and enhanced transport properties. When compared to the previous formulations, the optimized electrolyte exhibits a broader working temperature range, a higher fluidity over the temperature range from 25°C to -75 °C, and an enhanced ionic conductivity at temperatures below -70 °C as suggested by the Vogel–Fulcher–Tammann (VFT) model. Cyclic voltammetry (CV) confirmed the electrochemical stability of the electrolyte as well as the activity of the I3- / I- redox reaction for the MET sensing technology at room temperature. The presented works not only present a facile strategy of designing low-temperature electrolyte systems via design of molecular interactions, but also support future operations of MET seismometer.
ContributorsMacdonald, Shaun Michael (Author) / Dai, Dr. Lenore L. (Thesis director) / Lin, Wendy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05