Matching Items (5)
Filtering by

Clear all filters

151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
152804-Thumbnail Image.png
Description
Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr

Arsenic (As) and chromium (Cr) occur naturally in AZ surface and groundwaters, pose different health impacts, and exhibit different treatment efficacies. Hexavalent chromium (Cr(VI)) has newly recognized human health concerns, and State and Federal agencies are evaluating a low Cr(VI)-specific maximum contaminant level (MCL) for drinking water. Occurrence of Cr and As in municipal drinking waters and industrial cooling tower waters was quantified by grab samples and compared with sampling results obtained from a new passive sampler developed specifically for Cr(VI). Cr(VI) and As concentrations in groundwater used for cooling tower make-up water concentrations were ~3 ppb and ~4 ppb, respectively, and were concentrated significantly in blowdown water (~20 ppb and ~40 ppb). Based upon pending Cr(VI), As, and other metal regulations, these blowdown waters will need routine monitoring and treatment. Cr(VI) concentrations in a water treatment plant (WTP) raw and finished water samples varied from 0.5 and 2 ppb for grab samples collected every 4 hours for 7 consecutive days using an ISCO sampler. The development of an ion exchange (IX) based passive sampler was validated in the field at the WTP and yielded an average exposure within 1 standard deviation of ISCO sampler grab data. Sampling at both the WTP and cooling towers suggested sources of Cr(III) from treatment chemicals or wood preservatives may exist. Since both facilities use chlorine oxidants, I quantified the apparent (pH=5) second-order rate constant for aqueous chlorine (HOCl/OCl-) with Cr(III) to form Cr(VI) as 0.7 M-1s-1. Under typical conditions (2 ppb Cr(III) ; 2 mg/L Cl2) the half-life for the conversion of Cr(III) to the more toxic form Cr(VI) is 4.7 hours. The occurrence studies in AZ and CA show the Cr(VI) and As treatment of groundwaters will be required to meet stringent Cr(VI) regulations. IX technologies, both strong base anion (SBA) and weak base anion (WBA) resin types were screened (and compared) for Cr removal. The SBA IX process for As removal was optimized by utilizing a reactive iron coagulation and filtration (RCF) process to treat spent IX brine, which was then reused to for SBA resin regeneration.
ContributorsBowen, Alexandra (Author) / Paul, Westerhoff K. (Thesis advisor) / Hristovski, Kiril (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2014
150664-Thumbnail Image.png
Description
Population growth and fresh water depletion challenge drinking water utilities. Surface water quality is impacted significantly by climate variability, human activities, and extreme events like natural disasters. Dissolved organic carbon (DOC) is an important water quality index and the precursor of disinfection by-products (DBPs) that varies with both hydrologic and

Population growth and fresh water depletion challenge drinking water utilities. Surface water quality is impacted significantly by climate variability, human activities, and extreme events like natural disasters. Dissolved organic carbon (DOC) is an important water quality index and the precursor of disinfection by-products (DBPs) that varies with both hydrologic and anthropogenic factors. Granular activated carbon (GAC) is a best available technology for utilities to meet Stage 2 D/DBP rule compliance and to remove contaminants of emerging concern (CECs) (e.g., pharmaceutical, personal care products (PCPs), etc.). Utilities can operate GAC with more efficient and flexible strategies with the understanding of organic occurrence in source water and a model capable predicting DOC occurrence. In this dissertation, it was found that DOC loading significantly correlated with spring runoff and was intensified by dry-duration antecedent to first flush. Dynamic modeling based on reservoir management (e.g., pump-back operation) was established to simulate the DOC transport in the reservoir system. Additionally, summer water recreational activities were found to raise the level of PCPs, especially skin-applied products, in raw waters. GAC was examined in this dissertation for both carbonaceous and emerging nitrogenous DBP (N-DBP) precursors (i.e., dissolved organic nitrogen (DON)) removal. Based on the experimental findings, GAC preferentially removes UV254-absorbing material, and DOC is preferentially removed over DON which may be composed primarily of hydrophilic organic and results in the low affinity for adsorption by GAC. The presence of organic nitrogen can elevate the toxicity of DBPs by forming N-DBPs, and this could be a major drawback for facilities considering installation of a GAC adsorber owing to the poor removal efficiency of DON by GAC. A modeling approach was established for predicting DOC and DON breakthrough during GAC operation. However, installation of GAC adsorber is a burden for utilities with respect to operational and maintenance cost. It is common for utilities to regenerate saturated GAC in order to save the cost of purchasing fresh GAC. The traditional thermal regeneration technology for saturated GAC is an energy intensive process requiring high temperature of incineration. Additionally, small water treatment sites usually ship saturated GAC to specialized facilities for regeneration increasing the already significant carbon footprint of thermal regeneration. An innovative GAC regeneration technique was investigated in this dissertation for the feasibility as on-site water treatment process. Virgin GAC was first saturated by organic contaminant then regenerated in-situ by iron oxide nanocatalysts mixed with hydrogen peroxide. At least 70 % of adsorption capacity of GAC can be regenerated repeatedly for experiments using modeling compound (phenol) or natural organic matter (Suwannee River humic acid). The regeneration efficiency increases with increasing adsorbate concentration. Used-iron nanocatalysts can be recovered repeatedly without significant loss of catalytic ability. This in-situ regeneration technique provides cost and energy efficient solution for water utilities considering GAC installation. Overall, patterns were found for DOC and CEC variations in drinking water sources. Increasing concentrations of bulk (DOC and DON) and/or trace organics challenge GAC operation in utilities that have limited numbers of bed-volume treated before regeneration is required. In-situ regeneration using iron nanocatalysts and hydrogen peroxide provides utilities an alternative energy-efficient operation mode when considering installation of GAC adsorber.
ContributorsChiu, Chao-An (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
150177-Thumbnail Image.png
Description
Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a water treatment plant in an effort to enable them to more readily meet DBP regulations. To perform this analysis existing water treatment models were used in conjunction with historic water quality sampling data to predict chemical usage necessary to meet DBP regulations. A retrospective analysis was performed for the summer months of 2007 regarding potential for the WTP to reduce cost through optimizing the source water by an average of 30% over the four-month period, accumulating to overall treatment savings of $154 per MG ($82 per AF).
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Fox, Peter (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
134326-Thumbnail Image.png
Description
Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water

Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water protests to examine where protests happen and the causes associated with them. We analyze this information to illuminate socio-political issues associated with the city's water problems, such as political corruption, gentrification, as well as general power dynamics and lack of transparency between citizens, governments, and the private businesses which interact with them. We use text analysis of newspaper reports to analyze protest events in terms of the primary stimuli of water conflict, the areas within the city more prone to conflict, and the ways in which conflict and protest are used to initiate improved water management and to influence decision making to address water inequities. We found that water scarcity is the primary source of conflict, and that water scarcity is tied to new housing and commercial construction. These new constructions often disrupt water supplies and displace of minority or marginalized groups, which we denote as gentrification. The project demonstrates the intimate ties between inequities in housing and water in urban development. Key words: Conflict, protest, Mexico City, scarcity, new construction
ContributorsFlores, Shalae Alena (Author) / Eakin, Hallie C. (Thesis director) / Baeza-Castro, Andres (Committee member) / Lara-Valencia, Francisco (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05