Matching Items (3)
Filtering by

Clear all filters

135335-Thumbnail Image.png
Description
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
ContributorsMiller, Charles (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Carmen, Joshua (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135259-Thumbnail Image.png
Description
Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution

Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution and evaluate its neuropathogenesis, a mouse model was needed. To establish congenital infection, newborn C57BL/6J mice were intra-cerebrally (i.c.) injected with 1 x 103 PFU LCMV Armstrong. Mice failed to thrive, resulting in a linear reduction in survival over the following two weeks and overall survival of 13%. Surviving mice did not have virus in their circulation after thirty days. As an alternative, 500 PFU of LCMV Armstrong was injected intraperitoneally (i.p.) into other litters. While this was associated with significantly reduced mortality, no mice in this group developed persistent infection either. ELISAs revealed that the mothers of injected pups developed a robust humoral response, confirming earlier reports that contact-associated acute infection occurs (Hotchin, 1971). In addition, the offspring of two litters of mice (out of six tested) also had antibodies to the virus, but at slightly lower titers. This indicates that the humoral response of the mothers may play a role in the neonatal clearance of infection. A higher titer of LCMV in i.p. injections may be necessary to overcome these barriers and establish chronic infection. In contrast, a lower dose of LCMV is recommended for i.c. injections, as the mortality seemed directly linked to the effects of the virus on offspring growth and development. Exposure to the virus in utero may also be necessary to increase survival and the likelihood of chronic infection.
ContributorsMorrow, Kristen Nicole (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Franco, Lina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131272-Thumbnail Image.png
Description
Despite a continuously growing body of evidence that they are one of the major causes of pregnancy loss, preterm birth, pregnancy complications, and developmental abnormalities leading to high rates of morbidity and mortality, viruses are often overlooked and underestimated as teratogens. The Zika virus epidemic beginning in Brazil in 2015

Despite a continuously growing body of evidence that they are one of the major causes of pregnancy loss, preterm birth, pregnancy complications, and developmental abnormalities leading to high rates of morbidity and mortality, viruses are often overlooked and underestimated as teratogens. The Zika virus epidemic beginning in Brazil in 2015 brought teratogenic viruses into the spotlight for the public health community and popular media, and its infamy may bring about positive motivation and funding for novel treatments and vaccination strategies against it and a variety of other viruses that can lead to severe congenital disease. Lymphocytic choriomeningitis virus (LCMV) is famous in the biomedical community for its historic and continued utility in mouse models of the human immune system, but it is rarely a source of clinical concern in terms of its teratogenic risk to humans, despite its ability to cause consistently severe ocular and neurological abnormalities in cases of congenital infection. Possibilities for a safe and effective LCMV vaccine remain difficult, as the robust immune response typical to LCMV can be either efficiently protective or lethally pathological based on relatively small changes in the host type, viral strain, viral dose, method of infection/immunization, or molecular characteristics of synthetic vaccination. Introducing the immunologically unique state of pregnancy and fetal development to the mix adds complexity to the process. This thesis consists of a literature review of teratogenic viruses as a whole, of LCMV and its complications during pregnancy, of LCMV immunopathology, and of current understanding of vaccination against LCMV and against other teratogenic viruses, as well as a hypothetical experimental design intended to initially bridge the gaps between LCMV vaccinology and LCMV teratogenicity by bringing a vaccine study of LCMV into the context of viral challenge during pregnancy.
ContributorsHarris, Maryl (Author) / Blattman, Joseph (Thesis director) / Scotch, Matthew (Committee member) / Luna, Evelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05