Matching Items (7)
Filtering by

Clear all filters

137379-Thumbnail Image.png
Description
Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the most recent incarnation of opposition that has co-evolved with vaccine

Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the most recent incarnation of opposition that has co-evolved with vaccine practices for the duration of their mutual histories. Part one provides a historical context for the current movement using the example of the development and deployment of the smallpox vaccine as a representative timeline of vaccine acceptance and opposition. Part two describes the current movement in the United States and the United Kingdom, interprets the reasons for the conclusions drawn by vaccine-concerned parents, and provides a framework for public health officials to approach the issues.
ContributorsKost, Stephanie Michelle (Author) / Lynch, John (Thesis director) / Hurlbut, Ben (Committee member) / Robert, Jason (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-12
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155031-Thumbnail Image.png
Description
Vaccinations are important for preventing influenza infection. Maximizing vaccination uptake rates (80-90%) is crucial in generating herd immunity and preventing infection incidence. Vaccination of healthcare professionals (HCP) against influenza is vital to infection control in healthcare settings, given their consistent exposure to high-risk patients like: those with compromised immune systems,

Vaccinations are important for preventing influenza infection. Maximizing vaccination uptake rates (80-90%) is crucial in generating herd immunity and preventing infection incidence. Vaccination of healthcare professionals (HCP) against influenza is vital to infection control in healthcare settings, given their consistent exposure to high-risk patients like: those with compromised immune systems, children, and the elderly (Johnson & Talbot, 2011). Though vaccination is vital in disease prevention, influenza vaccination uptake among HCP is low overall (50% on average) (Pearson et al., 2006). Mandatory vaccination policies result in HCP influenza vaccination uptake rates substantially higher than opt-in influenza vaccination campaigns (90% vs. 60%). Therefore, influenza vaccination should be mandatory for HCP in order to best prevent influenza infection in healthcare settings. Many HCP cite individual objections to influenza vaccination rooted in personal doubts and ethical concerns, not best available scientific evidence. Nevertheless, HCP ethical responsibility to their patients and work environments to prevent and lower influenza infection incidence overrules such individual objections. Additionally, mandatory HCP influenza vaccination policies respect HCP autonomy via including medical and religious exemption clauses. While vaccination as a prevention method for influenza is logically sound, individuals’ actions are not always rooted in logic. Therefore, I analyze HCP perceptions and actions toward influenza vaccination in an effort to better explain low HCP uptake rates of the influenza vaccine and individual objections to influenza vaccination. Such analysis can aid in gaining HCP trust when implementing mandatory HCP influenza vaccination policies. In summary, mandatory HCP influenza vaccination policies are ethically justified, effective, scientifically-supported method of maximizing HCP influenza vaccine uptake and minimizing the spread of the influenza virus within healthcare settlings.
ContributorsGur-Arie, Rachel (Author) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Thesis advisor) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2016
137715-Thumbnail Image.png
Description
The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments,

The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments, current research in the field and what it may take to develop such a vaccine safe and economical for human usage.
ContributorsSlinker, Haleigh Renee (Author) / Chen, Qiang (Thesis director) / Huffman, Holly (Committee member) / Oberstein, Bruce (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2013-05
135990-Thumbnail Image.png
Description
In 1996, President Clinton ordered the formation of the Advisory Committee on Human Radiation Experiments (ACHRE), which undertook to evaluate the morality of a myriad of secret and publicized radiation experiments ranging from 1944 to 1974. The goal of this thesis is to analyze the ways in which that committee

In 1996, President Clinton ordered the formation of the Advisory Committee on Human Radiation Experiments (ACHRE), which undertook to evaluate the morality of a myriad of secret and publicized radiation experiments ranging from 1944 to 1974. The goal of this thesis is to analyze the ways in which that committee formed moral evaluations and the extent to which its strategies related to a broader historical and philosophical discourse. Here I attempt to describe two specific techniques of simplification the committee deploys in order to make a retrospective moral analysis possible. Although the techniques comprise specific problems, frameworks, subjective perspectives, and conceptual links, their unifying principle is the field of choices the techniques produce. In the first technique I outline, I argue that by focusing on the problem of historical relativism, the committee gains a platform through which it would be granted flexibility in making a distinction between moral wrongdoing and blameworthiness. In the second technique of simplification I outline, I argue that the committee's incorporation of a principle to reduce uncertainty as an ethical aim allow it to establish new ways to reconcile scientific aims with moral responsibility. In addition to describing the structure of these techniques, I also demonstrate how they relate to the specific experiments the analysts aim to evaluate, using both the ACHRE experiments as well as the Nuremberg Trial experiments as my examples. My hope is not to show why a given committee made a particular moral evaluation, or to say whether a decision was right or wrong, but rather to illustrate how certain techniques open up a field of choices that allow moral analysts to form retrospective moral judgments.
ContributorsCirjan, Cristian (Author) / Hurlbut, Ben (Thesis director) / Humphrey, Ted (Committee member) / Zachary, Gregg (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
131473-Thumbnail Image.png
Description
Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein expression. For this project two different plant viral vectors were compared; the geminiviral vector derived from Bean yellow dwarf virus (BeYDV) and the MagnICON vector system derived from Tobacco Mosaic Virus(TMV) and Potato Virus X(PVX). E16, an antibody against West Nile virus, has previously been expressed using both systems but expression levels between the systems were not directly compared. Agrobacterium tumefaciens EHA105 cells were transformed with both systems and expression levels of E16 were quantified using ELISAs. Results showed very low expression levels of E16 using the geminiviral vector indicating a need for further investigation into the clone used as previous studies reported much higher expression levels with the system.
ContributorsMurphy, Skylar (Author) / Chen, Qiang (Thesis director) / Jugler, Collin (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05