Matching Items (21)
Filtering by

Clear all filters

135335-Thumbnail Image.png
Description
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
ContributorsMiller, Charles (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Carmen, Joshua (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133844-Thumbnail Image.png
Description
Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high levels of conservation. On its own it is poorly immunogenic and offers little protection against influenza infections, but by combining it with a potent adjuvant, this limitation may be overcome. Recombinant immune complexes, or antigens fused to antibodies that have been engineered to form incredibly immunogenic complexes with one another, were previously shown to be useful, immunogenic platforms for the presentation of various antigens and could provide the boost in immunogenicity that M2e needs to become a powerful universal influenza A vaccine. In this thesis, genetic constructs containing geminiviral replication proteins and coding for a consensus sequence of dimeric M2e fused to antibodies featuring complimentary epitopes and epitope tags were generated and used to transform Agrobacterium tumefaciens. The transformed bacteria was then used to cause Nicotiana benthamiana to transiently express M2e-RICs at very high levels, with enough RICs being gathered to evaluate their potency in future mouse trials. Future directions and areas for further research are discussed.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh (Thesis director) / Mor, Tsafrir (Committee member) / Diamos, Andrew (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137379-Thumbnail Image.png
Description
Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the most recent incarnation of opposition that has co-evolved with vaccine

Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the most recent incarnation of opposition that has co-evolved with vaccine practices for the duration of their mutual histories. Part one provides a historical context for the current movement using the example of the development and deployment of the smallpox vaccine as a representative timeline of vaccine acceptance and opposition. Part two describes the current movement in the United States and the United Kingdom, interprets the reasons for the conclusions drawn by vaccine-concerned parents, and provides a framework for public health officials to approach the issues.
ContributorsKost, Stephanie Michelle (Author) / Lynch, John (Thesis director) / Hurlbut, Ben (Committee member) / Robert, Jason (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-12
136975-Thumbnail Image.png
Description
Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.
ContributorsHarahap, Indira Saridewi (Author) / Reyes del Valle, Jorge (Thesis director) / Hogue, Brenda (Committee member) / Misra, Rajeev (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136878-Thumbnail Image.png
Description
In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse reactions as well as imagined or unproven worries. Individuals' rights

In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse reactions as well as imagined or unproven worries. Individuals' rights to choose to get vaccinated or allow their children to be vaccinated comes to direct conflict with measures needed to protect communities from preventable viral diseases. The controversy surrounding vaccines is not new, nor necessarily are the fundamental reasons for skepticism. Looking back through the history of vaccines as a medical tool, the evolution of the controversy can be observed taking place with each new historical context, scientific development, and social conditions. Despite scientific research and assurances of vaccine safety, opposition and unease about vaccination appear to take Looking individually at the development and distribution of the smallpox (variola virus), polio (poliovirus) and human papilloma virus(HPV) vaccines, concerns regarding the violation of personal rights, safety of vaccines themselves, and social stigmas and connotations surrounding vaccines can be seen to evolve and change. Due to the way doubt can manifest in different ways over time, it may be impossible to fully end the vaccine debate. However, nderstanding the sociological factors behind anti-vaccine sentiment may allow healthcare professionals to work with concerned people with a particular care to address these visceral and sometimes irrational fears surrounding vaccination.
ContributorsStevens, Luke Christian (Author) / Jacobs, Bertram (Thesis director) / Washo-Krupps, Delon (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134495-Thumbnail Image.png
Description
As the complexity of healthcare continues to rise, the need for change in healthcare delivery is more prominent than ever. One strategy identified by the World Health Organization (WHO) for responding to these increasing complexities is the use of interprofessional practice and education to improve patient outcomes, reduce costs, and

As the complexity of healthcare continues to rise, the need for change in healthcare delivery is more prominent than ever. One strategy identified by the World Health Organization (WHO) for responding to these increasing complexities is the use of interprofessional practice and education to improve patient outcomes, reduce costs, and enhance the patient experience of care (Triple Aim). Interprofessional collaboration among diverse disciplines is evident on the Phoenix Biomedical Campus, integrating a wide variety of institutions and multiple health profession programs; and at the Student Health Outreach for Wellness (SHOW) free clinic, -- a successful tri-university, student-led, faculty mentored, and community-based model of interprofessional learning and care -- based in downtown Phoenix. This project conducted a comparative analysis of interprofessional components of 6 different clinical models in order to provide recommendations for best practice implementation. These models were chosen based on availability of research on interprofessionalism with their clinics. As a result, three recommendations were offered to the SHOW clinic for consideration in their efforts to improve both patient and educational outcomes. Each recommendation was intentionally formulated for its capacity to increase: interprofessionalism and collaboration between multiple disciplines pertaining to healthcare, among healthcare professionals to promote positive patient and educational outcomes. These recommendations include implementing an interprofessional education (IPE) course as a core component in an academic program's curriculum, offering faculty and professional development opportunities for faculty and mentors immersed in the interprofessional clinics, and utilization of simulation centers. Further studies will be needed to evaluate the impact these specific interventions, if adopted, on patient and educational outcomes.
ContributorsMousa, Mohammad (Co-author) / Mousa, Bakir (Co-author) / Johnson, Ross (Co-author) / Harrell, Liz (Thesis director) / Saewert, Karen (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133512-Thumbnail Image.png
Description
The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.
ContributorsViafora, Ataiyo Blue (Author) / Johnston, Stephen (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134065-Thumbnail Image.png
Description
The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on

The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on vaccination and whether or not herd immunity will continue in the United States for different diseases. To understand perceptions of vaccine risks and effectiveness among young adults in the U.S., this study describes Arizona State University students' perceptions of the harms and benefits of vaccines. A preliminary free list (n=30) identified what vaccines ASU college students were most likely to recall spontaneously. The six vaccines most commonly mentioned by ASU students were: influenza (flu), chickenpox, HPV, polio, MMR, and smallpox. Using these top six vaccines, we then developed a second survey about the knowledge and perceptions of each of these vaccines and vaccines as a whole. We found that students generally perceived vaccines as safe and important to their health, but they maintained an overall lack of understanding of how vaccines work and what they protect against. While this study is only a preliminary investigation into the perceptions of ASU college students on six commonly mentioned vaccines, this could lead to investigations on how to educate and promote the usage of vaccines to college students.
ContributorsGilson, Jacob (Co-author) / Sutton, Carly (Co-author) / Hruschka, Daniel (Thesis director) / Ruth, Alissa (Committee member) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135170-Thumbnail Image.png
Description
Introduction. Evidence shows that the United States' healthcare system is inefficient and lacks the quality and cost-effectiveness of other systems. The Institute for Healthcare Improvement outlined the Triple Aim to improve the healthcare system through 1) improvement of population health for a defined population, 2) enhance the patient care experience,

Introduction. Evidence shows that the United States' healthcare system is inefficient and lacks the quality and cost-effectiveness of other systems. The Institute for Healthcare Improvement outlined the Triple Aim to improve the healthcare system through 1) improvement of population health for a defined population, 2) enhance the patient care experience, and 3) reduce per capita cost of care. The World Health Organization has identified interprofessional practice (IPP) and interprofessional education (IPE) as a possible approach to achieve the Triple Aim. The Student Health Outreach for Wellness (SHOW) initiative is an interprofessional free clinic and outreach initiative for individuals experiencing homelessness. The goal of the current study was to evaluate whether interprofessional care delivery through SHOW moved SHOW's practice towards the Triple Aim for SHOW's defined population. Methods and Results. Data assessing adherence to Triple Aim goals of population health and costs of care were collected from voluntary post-visit patient satisfaction surveys, while data assessing patient experience were collected from shift rosters of SHOW versus a similar non-interprofessional clinic. SHOW, on average, provided access to more disciplines than a similar non-interprofessional clinic. Access to care cost savings was assessed by surveying patients on where they would have sought care elsewhere SHOW had not been available ; of the 53 patients surveyed, 14 indicated they would have gone to the emergency department (ED); in all, SHOW diverted a little over $30,000 in patient ED visits. Improved health outcomes were measured by each patient's self-perception of his/her health. 91% of patients agreed or strongly agreed that their health had been improved by coming to the clinic. Conclusion. Preliminary data suggest that SHOW's IPP care delivery results in high patient satisfaction rates and positive self-perception of health outcomes, thus may improve the patient experience and minimize costs of care by deterring ED visits within the population. Further studies are needed to determine how specific aspects of interprofessional care can further move towards Triple Aim objectives.
ContributorsSingh, Sukhdeep (Co-author) / Paode, Pooja (Co-author) / Harrell, Liz (Thesis director) / Wermers, Rita (Committee member) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05