Matching Items (18)

Filtering by

Clear all filters

133844-Thumbnail Image.png

The Development of a Plant-Expressed M2e-Based Universal Influenza Vaccine

Description

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix

Influenza is a deadly disease for which effective vaccines are sorely lacking. This is largely due to the phenomena of antigenic shift and drift in the influenza virus's surface proteins, hemagglutinin (HA) and neuraminidase (NA). The ectodomain of the matrix 2 protein (M2e) of influenza A, however, has demonstrated high levels of conservation. On its own it is poorly immunogenic and offers little protection against influenza infections, but by combining it with a potent adjuvant, this limitation may be overcome. Recombinant immune complexes, or antigens fused to antibodies that have been engineered to form incredibly immunogenic complexes with one another, were previously shown to be useful, immunogenic platforms for the presentation of various antigens and could provide the boost in immunogenicity that M2e needs to become a powerful universal influenza A vaccine. In this thesis, genetic constructs containing geminiviral replication proteins and coding for a consensus sequence of dimeric M2e fused to antibodies featuring complimentary epitopes and epitope tags were generated and used to transform Agrobacterium tumefaciens. The transformed bacteria was then used to cause Nicotiana benthamiana to transiently express M2e-RICs at very high levels, with enough RICs being gathered to evaluate their potency in future mouse trials. Future directions and areas for further research are discussed.

Contributors

Agent

Created

Date Created
2018-05

133028-Thumbnail Image.png

Somatosensory Modulation during Speech Planning

Description

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.

Contributors

Agent

Created

Date Created
2019-05

133512-Thumbnail Image.png

Characterization of Zika Virus Inactivated by Ultrashort Pulsed Laser as a Source for Vaccine Development

Description

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.

Contributors

Agent

Created

Date Created
2018-05

133440-Thumbnail Image.png

Detoxifying Lipid A in Agrobacterium tumefaciens

Description

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.

Contributors

Agent

Created

Date Created
2018-05

131272-Thumbnail Image.png

Effects of LCMV Infection on Murine Fetal Development in Immunized Mothers

Description

Despite a continuously growing body of evidence that they are one of the major causes of pregnancy loss, preterm birth, pregnancy complications, and developmental abnormalities leading to high rates of morbidity and mortality, viruses are often overlooked and underestimated as

Despite a continuously growing body of evidence that they are one of the major causes of pregnancy loss, preterm birth, pregnancy complications, and developmental abnormalities leading to high rates of morbidity and mortality, viruses are often overlooked and underestimated as teratogens. The Zika virus epidemic beginning in Brazil in 2015 brought teratogenic viruses into the spotlight for the public health community and popular media, and its infamy may bring about positive motivation and funding for novel treatments and vaccination strategies against it and a variety of other viruses that can lead to severe congenital disease. Lymphocytic choriomeningitis virus (LCMV) is famous in the biomedical community for its historic and continued utility in mouse models of the human immune system, but it is rarely a source of clinical concern in terms of its teratogenic risk to humans, despite its ability to cause consistently severe ocular and neurological abnormalities in cases of congenital infection. Possibilities for a safe and effective LCMV vaccine remain difficult, as the robust immune response typical to LCMV can be either efficiently protective or lethally pathological based on relatively small changes in the host type, viral strain, viral dose, method of infection/immunization, or molecular characteristics of synthetic vaccination. Introducing the immunologically unique state of pregnancy and fetal development to the mix adds complexity to the process. This thesis consists of a literature review of teratogenic viruses as a whole, of LCMV and its complications during pregnancy, of LCMV immunopathology, and of current understanding of vaccination against LCMV and against other teratogenic viruses, as well as a hypothetical experimental design intended to initially bridge the gaps between LCMV vaccinology and LCMV teratogenicity by bringing a vaccine study of LCMV into the context of viral challenge during pregnancy.

Contributors

Agent

Created

Date Created
2020-05

134065-Thumbnail Image.png

Perceptions of Vaccine Risks and Effectiveness Among ASU Students

Description

The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation

The development of safe and effective vaccines has been one of the greatest public achievements of the 20th century. However, there is still considerable public debate about the relative health costs and benefits of vaccines, and the information and misinformation spread through these debates can have a direct impact on vaccination and whether or not herd immunity will continue in the United States for different diseases. To understand perceptions of vaccine risks and effectiveness among young adults in the U.S., this study describes Arizona State University students' perceptions of the harms and benefits of vaccines. A preliminary free list (n=30) identified what vaccines ASU college students were most likely to recall spontaneously. The six vaccines most commonly mentioned by ASU students were: influenza (flu), chickenpox, HPV, polio, MMR, and smallpox. Using these top six vaccines, we then developed a second survey about the knowledge and perceptions of each of these vaccines and vaccines as a whole. We found that students generally perceived vaccines as safe and important to their health, but they maintained an overall lack of understanding of how vaccines work and what they protect against. While this study is only a preliminary investigation into the perceptions of ASU college students on six commonly mentioned vaccines, this could lead to investigations on how to educate and promote the usage of vaccines to college students.

Contributors

Agent

Created

Date Created
2017-12

135335-Thumbnail Image.png

Linking Immunologic and Epidemiologic Models of Virus Transmission and Susceptibility

Description

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.

Contributors

Agent

Created

Date Created
2016-05

136975-Thumbnail Image.png

Display of Domain III from Dengue 2 Envelope Protein on HBsAg Virus-like Particles Vectored by Measles Virus

Description

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.

Contributors

Created

Date Created
2014-05

136878-Thumbnail Image.png

Describing Virus Vaccines and Controversies: Comparison of Three Vaccines in Medical and Social Contexts

Description

In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse

In the United States, a dispute has arisen over the safety and need for vaccination, particularly in regard to compulsory vaccination laws. New outlets and social media sites publish countless reports about the dangers of vaccines or of known adverse reactions as well as imagined or unproven worries. Individuals' rights to choose to get vaccinated or allow their children to be vaccinated comes to direct conflict with measures needed to protect communities from preventable viral diseases. The controversy surrounding vaccines is not new, nor necessarily are the fundamental reasons for skepticism. Looking back through the history of vaccines as a medical tool, the evolution of the controversy can be observed taking place with each new historical context, scientific development, and social conditions. Despite scientific research and assurances of vaccine safety, opposition and unease about vaccination appear to take Looking individually at the development and distribution of the smallpox (variola virus), polio (poliovirus) and human papilloma virus(HPV) vaccines, concerns regarding the violation of personal rights, safety of vaccines themselves, and social stigmas and connotations surrounding vaccines can be seen to evolve and change. Due to the way doubt can manifest in different ways over time, it may be impossible to fully end the vaccine debate. However, nderstanding the sociological factors behind anti-vaccine sentiment may allow healthcare professionals to work with concerned people with a particular care to address these visceral and sometimes irrational fears surrounding vaccination.

Contributors

Agent

Created

Date Created
2014-05

137379-Thumbnail Image.png

Fools and Madmen: Public Health and Personal Autonomy in Vaccination Practices

Description

Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the

Vaccine opposition is a growing problem in developed countries where dropping vaccination rates threaten general public health by laying the foundation for resurgence and reemergence of previously eradicated infectious diseases. This thesis argues that the current movement is only the most recent incarnation of opposition that has co-evolved with vaccine practices for the duration of their mutual histories. Part one provides a historical context for the current movement using the example of the development and deployment of the smallpox vaccine as a representative timeline of vaccine acceptance and opposition. Part two describes the current movement in the United States and the United Kingdom, interprets the reasons for the conclusions drawn by vaccine-concerned parents, and provides a framework for public health officials to approach the issues.

Contributors

Agent

Created

Date Created
2013-12