Matching Items (2)
Filtering by

Clear all filters

151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
156989-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is characterized by the degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the majority of cholinergic input to the cortical mantle and together form the basocortical cholinergic system. Histone deacetylase (HDAC) dysregulation in the temporal lobe has been associated

Alzheimer’s disease (AD) is characterized by the degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the majority of cholinergic input to the cortical mantle and together form the basocortical cholinergic system. Histone deacetylase (HDAC) dysregulation in the temporal lobe has been associated with neuronal degeneration during AD progression. However, whether HDAC alterations play a role in cortical and cortically-projecting cholinergic nbM neuronal degeneration during AD onset is unknown. In an effort to characterize alterations in the basocortical epigenome semi-quantitative western blotting and immunohistochemistry were utilized to evaluate HDAC and sirtuin (SIRT) levels in individuals that died with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), or severe AD (sAD). In the frontal cortex, immunoblots revealed significant increases in HDAC1 and HDAC3 in MCI and mAD, followed by a decrease in sAD. Cortical HDAC2 levels remained stable across clinical groups. HDAC4 was significantly increased in prodromal and mild AD compared to aged cognitively normal controls. HDAC6 significantly increased during disease progression, while SIRT1 decreased in MCI, mAD, and sAD compared to controls. Basal forebrain levels of HDAC1, 3, 4, 6 and SIRT1 were stable across disease progression, while HDAC2 levels were significantly decreased in sAD. Quantitative immunohistochemistry was used to identify HDAC2 protein levels in individual cholinergic nbM nuclei immunoreactive for the early phosphorylated tau marker AT8, the late-stage apoptotic tau marker TauC3, and Thioflavin-S, a marker of mature neurofibrillary tangles (NFTs). HDAC2 nuclear immunoreactivity was reduced in individual cholinergic nbM neurons across disease stages, and was exacerbated in tangle-bearing cholinergic nbM neurons. HDAC2 nuclear reactivity correlated with multiple cognitive domains and with NFT formation. These findings identify global HDAC and SIRT alterations in the cortex while HDAC2 dysregulation contributes to cholinergic nbM neuronal dysfunction and NFT pathology during the progression of AD.
ContributorsMahady, Laura Jean (Author) / Mufson, Elliott J (Thesis advisor) / Bimonte-Nelson, Heather A. (Thesis advisor) / Coleman, Paul (Committee member) / Bowser, Robert (Committee member) / Arizona State University (Publisher)
Created2018