Matching Items (2)

Filtering by

Clear all filters

137296-Thumbnail Image.png

The Value of Emotion: Exploring the Use and Impact of Sentiment Analysis in Various Industries

Description

This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of

This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of using software to analyze social media to gauge the attitudes or sentiments of the users/authors concerning a particular subject. Sentiment analysis works by processing (data mining) unstructured textual evidence using natural language processing and machine learning to determine a positive, negative, or neutral measurement. When utilized correctly, sentiment analysis has the potential to glean valuable insights into consumers' minds, which in turn leads to increased revenue and improved customer satisfaction for businesses. This paper looks at four industries in which sentiment analysis is being used or being considered: retail/services, politics, healthcare, and finances. The goal of the thesis will be to explore whether sentiment analysis has been used successfully for economic or social benefit and whether it is a practical solution for analyzing consumer opinion.

Contributors

Agent

Created

Date Created
2014-05

150174-Thumbnail Image.png

An information diffusion approach to detecting emotional contagion in online social networks

Description

Internet sites that support user-generated content, so-called Web 2.0, have become part of the fabric of everyday life in technologically advanced nations. Users collectively spend billions of hours consuming and creating content on social networking sites, weblogs (blogs), and various

Internet sites that support user-generated content, so-called Web 2.0, have become part of the fabric of everyday life in technologically advanced nations. Users collectively spend billions of hours consuming and creating content on social networking sites, weblogs (blogs), and various other types of sites in the United States and around the world. Given the fundamentally emotional nature of humans and the amount of emotional content that appears in Web 2.0 content, it is important to understand how such websites can affect the emotions of users. This work attempts to determine whether emotion spreads through an online social network (OSN). To this end, a method is devised that employs a model based on a general threshold diffusion model as a classifier to predict the propagation of emotion between users and their friends in an OSN by way of mood-labeled blog entries. The model generalizes existing information diffusion models in that the state machine representation of a node is generalized from being binary to having n-states in order to support n class labels necessary to model emotional contagion. In the absence of ground truth, the prediction accuracy of the model is benchmarked with a baseline method that predicts the majority label of a user's emotion label distribution. The model significantly outperforms the baseline method in terms of prediction accuracy. The experimental results make a strong case for the existence of emotional contagion in OSNs in spite of possible alternative arguments such confounding influence and homophily, since these alternatives are likely to have negligible effect in a large dataset or simply do not apply to the domain of human emotions. A hybrid manual/automated method to map mood-labeled blog entries to a set of emotion labels is also presented, which enables the application of the model to a large set (approximately 900K) of blog entries from LiveJournal.

Contributors

Agent

Created

Date Created
2011