Matching Items (2)

Filtering by

Clear all filters

137296-Thumbnail Image.png

The Value of Emotion: Exploring the Use and Impact of Sentiment Analysis in Various Industries

Description

This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of

This thesis studies the area of sentiment analysis and its general uses, benefits, and limitations. Social networking, blogging, and online forums have turned the Web into a vast repository of comments on many topics. Sentiment analysis is the process of using software to analyze social media to gauge the attitudes or sentiments of the users/authors concerning a particular subject. Sentiment analysis works by processing (data mining) unstructured textual evidence using natural language processing and machine learning to determine a positive, negative, or neutral measurement. When utilized correctly, sentiment analysis has the potential to glean valuable insights into consumers' minds, which in turn leads to increased revenue and improved customer satisfaction for businesses. This paper looks at four industries in which sentiment analysis is being used or being considered: retail/services, politics, healthcare, and finances. The goal of the thesis will be to explore whether sentiment analysis has been used successfully for economic or social benefit and whether it is a practical solution for analyzing consumer opinion.

Contributors

Agent

Created

Date Created
2014-05

155252-Thumbnail Image.png

Mining signed social networks using unsupervised learning algorithms

Description

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source in deriving implicit information

for social data mining. However, the vast majority of existing studies overwhelmingly

focus on positive links between users while negative links are also prevailing in real-

world social networks such as distrust relations in Epinions and foe links in Slashdot.

Though recent studies show that negative links have some added value over positive

links, it is dicult to directly employ them because of its distinct characteristics from

positive interactions. Another challenge is that label information is rather limited

in social media as the labeling process requires human attention and may be very

expensive. Hence, alternative criteria are needed to guide the learning process for

many tasks such as feature selection and sentiment analysis.

To address above-mentioned issues, I study two novel problems for signed social

networks mining, (1) unsupervised feature selection in signed social networks; and

(2) unsupervised sentiment analysis with signed social networks. To tackle the first problem, I propose a novel unsupervised feature selection framework SignedFS. In

particular, I model positive and negative links simultaneously for user preference

learning, and then embed the user preference learning into feature selection. To study the second problem, I incorporate explicit sentiment signals in textual terms and

implicit sentiment signals from signed social networks into a coherent model Signed-

Senti. Empirical experiments on real-world datasets corroborate the effectiveness of

these two frameworks on the tasks of feature selection and sentiment analysis.

Contributors

Agent

Created

Date Created
2017