Matching Items (6)
Filtering by

Clear all filters

148139-Thumbnail Image.png
Description

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant pathogens. Not only is this strategy costly and time consuming, it is also unsustainable. To contend with this problem, many multi-drug treatment strategies are being explored. Previous studies have shown that resistance to some drug combinations is not possible, for example, resistance to a common antifungal drug, fluconazole, seems impossible in the presence of radicicol. We believe that in order to understand the viability of multi-drug strategies in combating drug resistance, we must understand the full spectrum of resistance mutations that an organism can develop, not just the most common ones. It is possible that rare mutations exist that are resistant to both drugs. Knowing the frequency of such mutations is important for making predictions about how problematic they will be when multi-drug strategies are used to treat human disease. This experiment aims to expand on previous research on the evolution of drug resistance in S. cerevisiae by using molecular barcodes to track ~100,000 evolving lineages simultaneously. The barcoded cells were evolved with serial transfers for seven weeks (200 generations) in three concentrations of the antifungal Fluconazole, three concentrations of the Hsp90 inhibitor Radicicol, and in four combinations of Fluconazole and Radicicol. Sequencing data was used to track barcode frequencies over the course of the evolution, allowing us to observe resistant lineages as they rise and quantify differences in resistance evolution across the different conditions. We were able to successfully observe over 100,000 replicates simultaneously, revealing many adaptive lineages in all conditions. Our results also show clear differences across drug concentrations and combinations, with the highest drug concentrations exhibiting distinct behaviors.

ContributorsApodaca, Samuel (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Huijben, Silvie (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148049-Thumbnail Image.png
Description

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into how evolutionary history has shaped mechanisms of cancer suppression by examining how life history traits impact cancer susceptibility across species. Here, we perform multi-level analysis to test how species-level life history strategies are associated with differences in neoplasia prevalence, and apply this to mammary neoplasia within mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a combination of factor analysis and phylogenetic regression on 13 life history traits across 90 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. The factor analysis presented ways to calculate quantifiable underlying factors that contribute to covariance of entangled life history variables. A greater risk of mammary neoplasia was found to be correlated most significantly with shorter gestation length. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability. Additionally, statistical methods developed for this project present a framework for future comparative oncology studies and have the potential for many diverse applications.

ContributorsFox, Morgan Shane (Author) / Maley, Carlo C. (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161050-Thumbnail Image.png
Description

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward to characterize in extant species but the selective pressures that drove their emergence at the transition(s) to multicellularity have yet to be fully characterized. Here we seek to understand how a dynamic environment shaped the emergence of two mechanisms of regulated cell survival: apoptosis and senescence. We developed an agent-based model to test the time to extinction or stability in each of these phenotypes across three levels of stochastic environments.

ContributorsDanesh, Dafna (Author) / Maley, Carlo (Thesis director) / Aktipis, Athena (Committee member) / Compton, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2021-12
131342-Thumbnail Image.png
Description
Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. A comparison of cancer prevalence across

Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. A comparison of cancer prevalence across the tree of life can give insight into how evolutionary history has shaped various mechanisms of cancer suppression. Here, we explore whether species-level life history strategies are associated with differences in mammary neoplasia rates across mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a phylogenetic regression on 15 life history traits across 112 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. A greater risk of mammary neoplasia was found in the characteristics associated with fast life history organisms and a lower risk of mammary neoplasia was found in the characteristics associated with slow life history organisms. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability.
ContributorsMajhail, Komal Kaur (Co-author) / Majhail, Komal (Co-author) / Maley, Carlo (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164820-Thumbnail Image.png
Description

Cancers of the reproductive tissues make up a significant portion of the cancer burden and mortality experienced by humans. Humans experience several proximal causative carcinogens that explain a portion of cancer risk, but an evolutionary viewpoint can provide a unique lens into the ultimate causes of reproductive cancer vulnerabilities. A

Cancers of the reproductive tissues make up a significant portion of the cancer burden and mortality experienced by humans. Humans experience several proximal causative carcinogens that explain a portion of cancer risk, but an evolutionary viewpoint can provide a unique lens into the ultimate causes of reproductive cancer vulnerabilities. A life history framework allows us to make predictions on cancer prevalence based on a species’ tempo of reproduction. Moreover, certain variations in the susceptibility and prevalence of cancer may emerge due to evolutionary trade-offs between reproduction and somatic maintenance. For example, such trade-offs could involve the demand for rapid proliferation of cells in reproductive tissues that arises with reproductive events. In this study, I compiled reproductive cancer prevalence for 158 mammalian species and modeled the predictive power of 13 life history traits on the patterns of cancer prevalence we observed, such as Peto’s Paradox or slow-fast life history strategies. We predicted that fast-life history strategists will exhibit higher neoplasia prevalence risk due to reproductive trade-offs. Furthering this analytical framework can aid in predicting cancer rates and stratifying cancer risk across the tree of life.

ContributorsDarapu, Harshini (Author) / Maley, Carlo (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165220-Thumbnail Image.png
Description

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on precise measurements of the relative fitness advantage (s) for each mutation and the strength of the fitness tradeoff that each mutation suffers in other contexts. Precisely quantifying s helps us create better, more accurate models of how mutants act in different treatment strategies. For example, P. falciparum acquires antimalarial drug resistance through a series of mutations to a single gene. Prior work in yeast expressing this P. falciparum gene demonstrated that mutations come with tradeoffs. Computational work has demonstrated the possibility of a treatment strategy which enriches for a particular resistant mutation that then makes the population grow poorly once the drug is removed. This treatment strategy requires knowledge of s and how it changes when multiple mutants are competing across various drug concentrations. Here, we precisely quantified s in varying drug concentrations for five resistant mutants, each of which provide varying degrees of drug resistance to antimalarial drugs. DNA barcodes were used to label each strain, allowing the mutants to be pooled together for direct competition in different concentrations of drug. This will provide data that can make the models more accurate, potentially facilitating more effective drug treatments in the future.

ContributorsNewell, Daphne (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05