Matching Items (6)

Filtering by

Clear all filters

149837-Thumbnail Image.png

The effects of housing conditions and methylphenidate on two volitional inhibition tasks

Description

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement of low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to wait a fixed amount of time (6 s) before emitting a reinforced response. The capacity to withhold the target response (volitional inhibition) and timing precision were estimated on the basis of performance in each of the tasks. Paradoxically, rats housed in a mildly enriched environment that included a conspecific displayed less volitional inhibition in both tasks compared to rats housed in an isolated environment. Enriched housing, however, increased timing precision. Acute administration of methylphenidate partially reversed the effects of enriched housing. Implications of these results in the assessment and treatment of ADHD-related impulsivity are discussed.

Contributors

Agent

Created

Date Created
  • 2011

151807-Thumbnail Image.png

The effects of maternal separation on adult methamphetamine self-administration: extinction, reinstatement, and MeCP2 immunoreactivity in the nucleus accumbens

Description

The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress

The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH) causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND) 2-14 for either 180 (MS180) or 15 min (MS15). Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion) in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.

Contributors

Agent

Created

Date Created
  • 2013

153899-Thumbnail Image.png

The temporal organization of operant behavior: a response bout analysis

Description

Many behaviors are organized into bouts – brief periods of responding punctuated by pauses. This dissertation examines the operant bouts of the lever pressing rat. Chapter 1 provides a brief

Many behaviors are organized into bouts – brief periods of responding punctuated by pauses. This dissertation examines the operant bouts of the lever pressing rat. Chapter 1 provides a brief history of operant response bout analyses. Chapters 2, 3, 5, and 6 develop new probabilistic models to identify changes in response bout parameters. The parameters of those models are demonstrated to be uniquely sensitive to different experimental manipulations, such as food deprivation (Chapters 2 and 4), response requirements (Chapters 2, 4, and 5), and reinforcer availability (Chapters 2 and 3). Chapter 6 reveals the response bout parameters that underlie the operant hyperactivity of a common rodent model of attention deficit hyperactivity disorder (ADHD), the spontaneously hypertensive rat (SHR). Chapter 6 then ameliorates the SHR’s operant hyperactivity using training procedures developed from findings in Chapters 2 and 4. Collectively, this dissertation provides new tools for the assessment of response bouts and demonstrates their utility for discerning differences between experimental preparations and animal strains that may be otherwise indistinguishable with more primitive methods.

Contributors

Agent

Created

Date Created
  • 2015

153854-Thumbnail Image.png

The epigenome: possible mechanisms by which early life stress may prime vulnerability towards substance use disorder

Description

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS.

Contributors

Agent

Created

Date Created
  • 2015

153152-Thumbnail Image.png

Methamphetamine and novel "legal high" methamphetamine mimetics: abuse liability, toxicity, and potential pharmacobehavioral treatments

Description

Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and

Globally, addiction to stimulants such as methamphetamine (METH) remains a significant public health problem. Despite decades of research, no approved anti-relapse medications for METH or any illicit stimulant exist, and current treatment approaches suffer from high relapse rates. Recently, synthetic cathinones have also emerged as popular abused stimulants, leading to numerous incidences of toxicity and death. However, contrary to traditional illicit stimulants, very little is known about their addiction potential. Given the high relapse rates and lack of approved medications for METH addiction, chapters 2 and 3 of this dissertation assessed three different glutamate receptor ligands as potential anti-relapse medications following METH intravenous self-administration (IVSA) in rats. In chapters 4 through 7, using both IVSA and intracranial self-stimulation (ICSS) procedures, experiments assessed abuse liability of the popular synthetic cathinones 3,4-Methylenedioxypyrovalerone (MDPV) , methylone, α-pyrrolidinovalerophenone (α-PVP) and 4-methylethylcathinone (4-MEC). Results from these seminal studies suggest that these drugs possess similar abuse potential to traditional illicit stimulants such as METH, cocaine, and 3,4-methylenedioxymethamphetamine (MDMA). Finally, studies outlined in chapter 8 assessed the potential neurotoxic or adverse cognitive effects of METH and MDPV following IVSA procedures for the purpose of identifying potential novel pharmacotherapeutic targets. However, results of these final studies did not reveal neurotoxic or adverse cognitive effects when using similar IVSA procedural parameters that were sufficient for establishing addiction potential, suggesting that these parameters do not allow for sufficient drug intake to produce similar neurotoxicity or cognitive deficits reported in humans. Thus, these models may be inadequate for fully modeling the adverse neural and psychological consequences of stimulant addiction. Together, these studies support the notion for continued research into the abuse liability and toxicity of METH and synthetic cathinones and suggest that refinements to traditional IVSA models are needed for both more effective assessment of potential cognitive and neural deficits induced by these drugs and screening of potentially clinically efficacious pharmacotherapeutics.

Contributors

Agent

Created

Date Created
  • 2014

158026-Thumbnail Image.png

Effects of Heroin on Prosocial Behavior in Rats and its Modulation by the Anterior Insula

Description

Opioid use rates and related deaths continue to be a public health crisis; while there are many contributing factors to opioid use disorders, criteria for diagnosis include problems related to

Opioid use rates and related deaths continue to be a public health crisis; while there are many contributing factors to opioid use disorders, criteria for diagnosis include problems related to social functioning. Previous research indicates that laboratory rats, which are frequently used as animal models of addiction-related behaviors, are capable of prosocial behavior. The following collection of studies were performed to determine the effects of heroin on prosocial behavior in rats, as well as the role of the insula in both self-administration of heroin and prosocial behaviors. All of the experiments were conducted utilizing an established model of prosocial behavior in rats in which a performing rat releases a cagemate from a restrainer. The occurrence of and latency to free the confined rat was recorded. After baseline rescuing behavior was established, rats were allowed to self-administer heroin (0.06 mg/kg/infusion i.v.), and subsequent experimental conditions were imposed.

Experimental conditions, in a series of different studies, included comparing heroin reinforcers with sucrose, chemogenetically modulating the insular cortex (both stimulatory and inhibitory processes) and administering excitotoxic lesions in the insula. There were significant differences in saving behaviors between heroin and sucrose groups demonstrating an opioid induced loss of prosocial behavior. Modulating the insula chemogenetically resulted in some restoration of these opioid related deficits, and insular lesions did not significantly impact prosocial behaviors, however, there were significant differences between rates of heroin intake in lesioned animals versus non-lesioned controls. Taken together, these results demonstrate the deleterious effects of heroin on prosocial behaviors and offer further support for the role of the insula in both addiction and social constructs.

Contributors

Agent

Created

Date Created
  • 2020