Matching Items (15)
Filtering by

Clear all filters

151964-Thumbnail Image.png
Description
5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose- dependently attenuated cue-primed reinstatement, without affecting cocaine-primed reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR agonist, to investigate whether these compounds interact to attenuate cocaine hyperlocomotion and Fos protein expression. Only the drug combination attenuated cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5- HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR agonism.
ContributorsPockros, Lara Ann (Author) / Neisewander, Janet L (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
151615-Thumbnail Image.png
Description
Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats,

Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats, termed a PPI recovery, and is observable 28 days after treatment. The aim of the current project is to illuminate the underlying mechanism for this persistent change of behavior and determine the clinical relevance of repeated D2-like agonist treatment. Our results revealed a significant increase in Delta FosB, a transcription factor, in the nucleus accumbens (NAc) 10 days after repeated D2-like agonist treatment. Additionally, we investigated if Delta FosB was necessary for long-lasting PPI recovery and discovered a bilateral infusion of dominant-negative Delta JunD prevented PPI recovery after repeated D2-like agonist treatment. To further develop the underlying mechanism of PPI recovery, we observed that dominant negative mutant cyclic adenosine monophosphate (cAMP) response biding element protein (CREB) prevented repeated D2-like agonist-induced Delta FosB expression in the NAc. We then compared our previous behavioral and intracellular findings to the results of repeated aripiprazole, a novel D2-like partial agonist antipsychotic, to determine if repeated D2-like receptor agonist action is a clinically relevant pharmacological approach. As compared to previous PPI recovery and Delta FosB expression after repeated D2-like agonist treatment, we found similar PPI recovery and Delta FosB expression after repeated aripiprazole treatment in rats. We can conclude that repeated D2-like agonist treatment produces persistent PPI recovery through CREB phosphorylation and Delta FosB, which is necessary for PPI recovery. Furthermore, this pharmacological approach produces behavioral and intracellular changes similar to an effective novel antipsychotic. These findings suggest the underlying intracellular mechanism for sustained PPI recovery is clinically relevant and may be a potential target of therapeutic intervention to alleviate sensorimotor gating deficits, which are associated with cognitive symptoms of schizophrenia.
ContributorsMaple, Amanda (Author) / Hammer, Ronald P. (Thesis advisor) / Olive, Michael F (Committee member) / Gallitano, Amelia L (Committee member) / Conrad, Cheryl D. (Committee member) / Nikulina, Ella M (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011
153989-Thumbnail Image.png
Description
Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards elicit unique patterns of neural signaling in the corticolimbic neurocircuitry when presented in combination versus individually; 2) play behavior is

Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards elicit unique patterns of neural signaling in the corticolimbic neurocircuitry when presented in combination versus individually; 2) play behavior is not necessary for expression of social reward; and 3) social context enhances nicotine self-administration. To test the first hypothesis, Fos protein was measured in response to social and nicotine reward stimuli given alone or in combination and in response to environmental cues associated with the rewards in a conditioned place preference (CPP) test. Social-conditioned environmental stimuli attenuated Fos expression in the nucleus accumbens core. A social partner elevated Fos expression in the caudate-putamen, medial and central amygdala, and both nucleus accumbens subregions. Nicotine decreased Fos expression in the cingulate cortex, caudate-putamen, and the nucleus accumbens core. Both stimuli combined elevated Fos expression in the basolateral amygdala and ventral tegmental area, suggesting possible overlap in processing both rewards in these regions. I tested the second hypothesis with an apparatus containing compartments separated by a wire mesh barrier that allowed limited physical contact with a rat or object. While 2 pairings with a partner rat (full physical contact) produced robust CPP, additional pairings were needed for CPP with a partner behind a barrier or physical contact with an object (i.e., tennis ball). The results demonstrate that physical contact with a partner rat is not necessary to establish social-reward CPP. I tested the third hypothesis with duplex operant conditioning chambers separated either by a solid or a wire mesh barrier to allow for social interaction during self-administration sessions. Nicotine (0.015 and 0.03 mg/kg, IV) and saline self-administration were assessed in male and female young-adult rats either in the social context or isolation. Initially, a social context facilitated nicotine intake at the low dose in male rats, but suppressed intake in later sessions more strongly in female rats, suggesting that social factors exert strong sex-dependent influences on self-administration. These novel findings highlight the importance of social influences on several nicotine-related behavioral paradigms and associated neurocircuitry.
ContributorsPeartree, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Nikulina, Ella M (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
156178-Thumbnail Image.png
Description
The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress

The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress can return to levels similar to controls when a post-stress “rest” period (i.e., undisturbed except for normal husbandry) is given prior to testing. Male rats underwent chronic restraint stress for 6hr/day/21days (STR-IMM). Some rats, underwent a post-stress rest period for 6- or 3-weeks after the end of stress (STR-R6, STR-R3). Control (CON) rats were unrestrained for the duration of the experiment. In Experiment 1, following the stress or rest manipulation, all rats were acclimated to conditioning and extinction contexts, fear conditioned with 3 tone-foot shock pairings, and then had two days of extinction training. All groups froze similarly to the tone across all training sessions. However, STR-R6/R3 froze less in the non-shock context than did STR-IMM or CON. During extinction training, STR-IMM showed high levels of freezing to the non-shock context, leading to a concern they may be generalizing across contexts. Consequently, a follow-up experiment tested for context generalization. In Experiment 2, STR-IMM rats underwent a generalization test in an environment that was either different or the same as the conditioning environment, using STR-R6 as a comparison. STR-IMM and STR-R6 showed similar relative levels of freezing to tone and context, regardless of their conditioning environment to reveal that STR-IMM did not generalize and instead, maybe expressing hypervigilance. Thus, the present study demonstrated the novel finding that a rest period from chronic stress can lead to reduced fear responsiveness in a non-shock environment.
ContributorsJudd, Jessica M (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2018
157041-Thumbnail Image.png
Description
Nicotine self-administration is associated with decreased expression of the glial glutamate transporter 1 (GLT-1) and the cystine-glutamate exchange protein xCT in the nucleus accumbens core (NAcore). N-acetylcysteine (NAC), which is an antioxidant, anti-inflammatory, and glutamatergic agent, restores these proteins associated with increased relapse vulnerability. However, the specific molecular mechanisms driving

Nicotine self-administration is associated with decreased expression of the glial glutamate transporter 1 (GLT-1) and the cystine-glutamate exchange protein xCT in the nucleus accumbens core (NAcore). N-acetylcysteine (NAC), which is an antioxidant, anti-inflammatory, and glutamatergic agent, restores these proteins associated with increased relapse vulnerability. However, the specific molecular mechanisms driving NAC inhibitory effects on cue-induced nicotine reinstatement are unknown. Thus, the present study assessed NAC’s effects on cue-induced nicotine reinstatement are dependent on NAcore GLT-1 expression. Here, rats were treated with NAC in combination with intra-NAcore vivo-morpholinos to examine the role of GLT-1 in NAC-mediated inhibition of cue-induced nicotine seeking. Subchronic NAC treatment attenuated cue-induced nicotine seeking in male rats and an antisense vivo-morpholino (AS) designed to selectively suppress GLT-1 expression in the NAcore blocked this effect. NAC treatment was also associated with an inhibition of pro-inflammatory tumor necrosis factor alpha (TNFα) expression in the NAcore. As well, GLT-1 AS markedly increased expression of CD40, a known marker of pro-inflammatory M1 activation of microglia and macrophages. To further examine whether NAC-induced decreases in nicotine seeking involve suppression of TNFα, we manipulated a downstream mediator of this pathway, nuclear factor kappa B (NF-kB). Considering the putative role of NF-κB in learning, memory, and synaptic plasticity, separate experiments were performed where rats were treated with herpes simplex virus (HSV) vectors designed to increase (HSV-IKKca) or decrease (HSV-IKKdn) NF-κB signaling through interactions with IκB Kinase (IKK). The goal was to examine the role of NF-κB signaling in mediating nicotine seeking behavior and if NF-κB signaling regulates GLT-1 expression. HSV-IKKdn alone and in combination with NAC inhibited cue-induced nicotine reinstatement, while HSV-IKKca blocked the attenuating effect of NAC on reinstatement. Interestingly, both HSV-IKKdn and HSV-IKKca, regardless of NAC treatment, inhibited GLT-1 expression. Taken together, these results suggest that while GLT-1 may be a conserved neurobiological substrate underlying relapse vulnerability across drugs of abuse, immunomodulatory mechanisms may regulate drug-induced alterations in glutamatergic plasticity that mediate cue-induced drug-seeking behavior through GLT-1-independent mechanisms.
ContributorsNamba, Mark Douglas (Author) / Gipson-Reichardt, Cassandra D (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / Arizona State University (Publisher)
Created2019
157018-Thumbnail Image.png
Description
Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade.

Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade. Therefore, there must be some evolutionary advantages to being small and/or compensatory mechanisms that allow small animals to compete with larger species. In this dissertation I specifically explore the scaling of flight performance (flight metabolic rate, wing beat frequency, load-carrying capacity) and learning behaviors (visual differentiation visual Y-maze learning) across stingless bee species that vary by three orders of magnitude in body size. I also test whether eye morphology and calculated visual acuity match visual differentiation and learning abilities using honeybees and stingless bees. In order to determine what morphological and physiological factors contribute to scaling of these performance parameters I measure the scaling of head, thorax, and abdomen mass, wing size, brain size, and eye size. I find that small stingless bee species are not limited in visual learning compared to larger species, and even have some energetic advantages in flight. These insights are essential to understanding how small size evolved repeatedly in all animal clades and why it persists. Finally, I test flight performance across stingless bee species while varying temperature in accordance with thermal changes that are predicted with climate change. I find that thermal performance curves varied greatly among species, that smaller species conform closely to air temperature, and that larger bees may be better equipped to cope with rising temperatures due to more frequent exposure to high temperatures. This information may help us predict whether small or large species might fare better in future thermal climate conditions, and which body-size related traits might be expected to evolve.
ContributorsDuell, Meghan (Author) / Harrison, Jon F. (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Rutowski, Ronald (Committee member) / Wcislo, William (Committee member) / Conrad, Cheryl (Committee member) / Arizona State University (Publisher)
Created2018