Matching Items (12)
Filtering by

Clear all filters

151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017
154212-Thumbnail Image.png
Description
Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on

Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on short- and long- term brain health. The goal of my dissertation was to understand how lifetime hormone exposures shape the female cognitive phenotype using several innovative approaches, including a new human spatial working memory task, the human radial arm maze (HRAM), and several rodent menopause models with variants of clinically used hormone treatments. Using the HRAM (chapter 2) and established human neuropsychological tests, I determined males outperformed females with high endogenous or exogenous estrogen levels on visuospatial tasks and the spatial working memory HRAM (chapter 3). Evaluating the synthetic estrogen in contraceptives, ethinyl estradiol (EE), I found a high EE dose impaired spatial working memory in ovariectomized (Ovx) rats, medium and high EE doses reduced choline-acetyltransferace-immunoreactive neuron population estimates in the basal forebrain following Ovx (chapter 4), and low EE impaired spatial cognition in ovary-intact rats (chapter 5). Assessing the impact of several clinically-used HTs, I identified a window of opportunity around ovarian follicular depletion outside of which the HT conjugated equine estrogens (CEE) was detrimental to spatial memory (chapter 6), as well as therapeutic potentials for synthetic contraceptive hormones (chapter 9) and bioidentical estradiol (chapter 7) during and after the transition to menopause. Chapter 6 and 7 findings, that estradiol and Ovx benefitted cognition after the menopause transition, but CEE did not, are perhaps due to the negative impact of ovarian-produced, androstenedione-derived estrone; indeed, blocking androstenedione’s conversion to estrone prevented its cognitive impairments (chapter 8). Finally, I determined that EE combined with the popular progestin levonorgestrel benefited spatial memory during the transition to menopause, a profile not seen with estradiol, levonorgestrel, or EE alone (chapter 9). This work identifies several cognitively safe, and enhancing, hormonal treatment options at different time points throughout female aging, revealing promising avenues toward optimizing female health.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona (Committee member) / Whiteaker, Paul (Committee member) / Talboom, Joshua (Committee member) / Arizona State University (Publisher)
Created2015
157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4,

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
ContributorsPena, Veronica Leigh (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
157626-Thumbnail Image.png
Description
Reproductive hormones are recognized for their diverse functions beyond reproduction itself, including a vital role in brain organization, structure, and function throughout the lifespan. From puberty to reproductive senescence, the female is characterized by inherent responsiveness to hormonal cyclicity. For most women, a natural transition to menopause occurs in midlife,

Reproductive hormones are recognized for their diverse functions beyond reproduction itself, including a vital role in brain organization, structure, and function throughout the lifespan. From puberty to reproductive senescence, the female is characterized by inherent responsiveness to hormonal cyclicity. For most women, a natural transition to menopause occurs in midlife, wherein the endogenous hormonal milieu undergoes significant changes and marks the end of the reproductive life stage. Although most women experience natural menopause, many women will undergo gynecological surgery during their lifetime, which can lead to an abrupt surgical menopause. It is of critical importance to better understand how endogenous and exogenous reproductive hormone exposures across the lifespan influence cognitive and brain aging, as women are at a greater risk for developing a variety of diseases after menopause, including dementia. Using rodent models, this dissertation explores how the etiology of reproductive senescence, that is, whether it is transitional or surgical, influences the female phenotype to result in divergent cognitive outcomes dependent upon a variety of factors, with an emphasis on age at the time of intervention playing a key role in brain outcomes. Furthermore, the impact of exogenous hormone therapy on cognition is evaluated in the context of surgical menopause. A novel rat model of hysterectomy is also presented, with results demonstrating for the first time that the nonpregnant uterus, which is typically considered to be a quiescent organ, may play a unique, direct role in modulating cognitive outcomes. Neurobiological mechanisms associated with reproductive hormones and aging are assessed to better recognize neural correlates underlying the observed behavior changes. The overarching goal of this dissertation was to elucidate novel factors contributing to cognitive aging outcomes in females. Collectively, the data presented herein indicate that the age at the onset of reproductive senescence has significant implications for learning and memory outcomes, and that variations in gynecological surgery can have unique, long-lasting effects on the brain and cognition. Translationally, this series of experiments moves the field forward toward the goal of improving the health and quality of life for women throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / DeNardo, Dale F (Committee member) / Newbern, Jason M (Committee member) / Reiman, Eric M (Committee member) / Arizona State University (Publisher)
Created2019