Matching Items (7)
Filtering by

Clear all filters

148084-Thumbnail Image.png
Description

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The

Medicolegal forensic entomology is the study of insects to aid with legal investigations (Gemmellaro, 2017). Insect evidence can be used to provide information such as the post-mortem interval (PMI). Blow flies are especially useful as these insects are primary colonizers, quickly arriving at a corpse (Malainey & Anderson, 2020). The age of blow flies found at a scene is used to calculate the PMI. Blow fly age can be estimated using weather data as these insects are poikilothermic (Okpara, 2018). Morphological analysis also can be used to estimate age; however, it is more difficult with pupal samples as the pupae exterior does not change significantly as development progresses (Bala & Sharma, 2016). Gene regulation analysis can estimate the age of samples. MicroRNAs are short noncoding RNA that regulate gene expression (Cannell et al., 2008). Here, we aim to catalog miRNAs expressed during the development of three forensically relevant blow fly species preserved in several storage conditions. Results demonstrated that various miRNA sequences were differentially expressed across pupation. Expression of miR92b increased during mid pupation, aga-miR-92b expression increased during early pupation, and bantam, miR957, and dana-bantam-RA expression increased during late pupation. These results suggest that microRNA can be used to estimate the age of pupal samples as miRNA expression changes throughout pupation. Future work could develop a statistical model to accurately determine age using miRNA expression patterns.

ContributorsHerrera-Quiroz, Demian David (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147635-Thumbnail Image.png
Description

In this experiment, the viability of gunshot residue (GSR) was examined. This was done through the very rarely researched intersection of forensic firearms analysis and forensic entomology. The question being resolved is if GSR can reliably be detected from secondary evidence transfer of GSR laden carrion onto flies and their

In this experiment, the viability of gunshot residue (GSR) was examined. This was done through the very rarely researched intersection of forensic firearms analysis and forensic entomology. The question being resolved is if GSR can reliably be detected from secondary evidence transfer of GSR laden carrion onto flies and their larvae. While it is know that secondary and tertiary GSR evidence can be transferred by way of handshakes, no such research has been conducted on flies or their pupae. Findings indicated varying levels of detection of GSR on evidence. GSR could reliably be detected on fly bodies and their legs, but not on their pupae. This research is significant as it provides previously unknown information on this line of research and provides the groundwork for further research on this topic in the future.

ContributorsGill, Brendan J (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148031-Thumbnail Image.png
Description

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors

Forensic entomology is an important field of forensic science that utilizes insect evidence in criminal investigations. Blow flies (Diptera: Calliphoridae) are among the first colonizers of remains and are therefore frequently used in determining the minimum postmortem interval (mPMI). Blow fly development, however, is influenced by a variety of factors including temperature and feeding substrate type. Unfortunately, dietary fat content remains an understudied factor on the development process, which is problematic given the relatively high rates of obesity in the United States. To study the effects of fat content on blow fly development we investigated the survivorship, adult weight and development of Lucilia sericata (Meigen; Diptera: Calliphoridae) and Phormia regina (Meigen; Diptera: Calliphoridae) on ground beef with a 10%, 20%, or 27% fat content. As fat content increased, survivorship decreased across both species with P. regina being significantly impacted. While P. regina adults were generally larger than L. sericata across all fat levels, only L. sericata demonstrated a significant (P < 0.05) difference in weight by sex. Average total development times for P. regina are comparable to averages published in other literature. Average total development times for L. sericata, however, were nearly 50 hours higher. These findings provide insight on the effect of fat content on blow fly development, a factor that should be considered when estimating a mPMI. By understanding how fat levels affect the survivorship and development of the species studied here, we can begin improving the practice of insect evidence analysis in casework.

ContributorsNoblesse, Andrew (Author) / Weidner, Lauren (Thesis director) / Parrott, Jonathan (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The field of forensic science has been growing and changing with improvements in DNA analysis. One field affected is forensic entomology, which is exploring many ways in which DNA can increase the application of insects in forensic science. One application being explored is the use of insects as a source

The field of forensic science has been growing and changing with improvements in DNA analysis. One field affected is forensic entomology, which is exploring many ways in which DNA can increase the application of insects in forensic science. One application being explored is the use of insects as a source of human DNA in a criminal investigation. Using flies as a source of foreign DNA can also be utilized in ecological research to conduct surveys on the various species present in different environments. This experiment intends to determine if flies can act as a viable source of alternate DNA. This will be accomplished by an ecological survey of DNA extracted from flies. DNA extractions were performed on flies gathered from parts of the greater Phoenix area. The DNA was then amplified with primers targeting different animal species and examined to observe what animals the flies had come in contact with. Several samples had contamination due to human error and were not able to be evaluated. One DNA extraction out of fifteen yielded pig DNA, indicating flies can be used as a source of DNA. Future experiments should use different animal primers and amplify sections of DNA that can determine the different species consumed by flies. Further research into flies as a DNA source can increase the amount of information available to forensic scientists as well as improve ecologist’s observation of an environment’s biodiversity.

ContributorsRiccomini, Brianna (Author) / Parrott, Jonathan (Thesis director) / Marshall, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
165587-Thumbnail Image.png
Description
Bloodstain Pattern Analysis and Toxicology are important aspects of Forensic Science in determining what occurred at a crime scene. There are limited studies done on the effects of drugs on blood spatter found at crime scenes. Since drugs can have different effects on the body, the blood would be affected

Bloodstain Pattern Analysis and Toxicology are important aspects of Forensic Science in determining what occurred at a crime scene. There are limited studies done on the effects of drugs on blood spatter found at crime scenes. Since drugs can have different effects on the body, the blood would be affected by these drugs. Visine and Aspirin were chosen to be incorporated into sheep’s blood due to their common use in the general population. Contaminated blood was deposited onto several common surfaces alongside controls. The results were compared to the control and the secondary control, DI water added to blood, using a two-sample t-test. Many of the results came back as significant including the secondary control compared to the control group. Therefore the significance of the results cannot be linked directly back to the substances themselves, but to the water in addition to the substance added. Future studies could be done with higher concentrations of drugs, with the metabolites of drugs, and with different drugs, licit and illicit.
ContributorsWedel, Sydnee (Author) / Parrott, Jonathan (Thesis director) / Weidner, Lauren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Criminology and Criminal Justice (Contributor)
Created2022-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05
164123-Thumbnail Image.png
Description
The use of DNA testing has been focused primarily on biological samples such as blood or saliva found at crime scenes. These types of evidence in the forensic field are sometimes difficult to come by, especially when there is no body to find to verify things such as identity or

The use of DNA testing has been focused primarily on biological samples such as blood or saliva found at crime scenes. These types of evidence in the forensic field are sometimes difficult to come by, especially when there is no body to find to verify things such as identity or status of a person. In the case of the burial of a body, they can be remote and relocated multiple times depending on each situation. Clandestine burials are not uncommon especially in the Arizona desert by the United States and Mexico border. Since there is no physical body to find the next best avenue to finding a clandestine burial is through search teams which can take weeks to months or other expensive technology such as ground penetrating radar (GPR). A new more interesting avenue to search for bodies is using the most found material–soil. Technology has allowed the possibility of using soil DNA microbiome testing initially to study the varieties of microbes that compose in soil. Microbiomes are unique and plentiful and essentially inescapable as humans are hosts of millions of them. The idea of a microbiome footprint at a crime scene seems out of reach considering the millions of species that can be found in various areas. Yet it is not impossible to get a list of varieties of species that could indicate there was a body in the soil as microbiomes seep through from decomposition. This study determines the viability of using soil microbial DNA as a method of locating clandestine graves by testing 6 different locations of a previous pig decomposition simulation. These two locations give two different scenarios that a body may be found either exposed to the sun in an open field or hidden under foliage such as a tree in the Sonoran Desert. The experiment will also determine more factors that could contribute to a correlation of microbiome specific groups associated with decomposition in soil such as firmicutes. The use of soil microbial DNA testing could open the doors to more interpretation of information to eventually be on par with the forensic use of biological DNA testing which could potentially supplement testimonies on assumed burial locations that occurs frequently in criminal cases of body relocation and reburial.
ContributorsMata Salinas, Jennifer (Author) / Marshall, Pamela (Thesis director) / Bolhofner , Katelyn (Committee member) / Wang, Yue (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2022-05