Matching Items (2)
Filtering by

Clear all filters

136978-Thumbnail Image.png
Description
The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid used clinically in women at risk for preterm delivery or

The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid used clinically in women at risk for preterm delivery or in preterm infants to promote proper pulmonary development in high-risk neonates. Prenatal exposure to glucocorticoids such as DEX may change the development of important brain regulatory centers such as the PVN, resulting in increased risk for diseases in adulthood.
Previous studies have demonstrated that the hypothalamus regulates neuroendocrine and autonomic function and behavior. Within the hypothalamus, the paraventricular nucleus (PVN) is an integratory node that contains neurons associated with the control of neuroendocrine and autonomic responses. The PVN also has one of the highest density of blood vessels within the brain. Alterations of normal PVN angiogenesis by dexamethasone could potentially result in long-term modifications of brain and endocrine functions.
Timed-pregnant Sprague Dawley female rats received DEX on gestational days 18-21 and the resulting progeny were sacrificed at Postnatal Day (PND) 0, 4, 14, and 21. A tomato lectin, Lycopersicon Esculentum labeled with DyLight594 was used to stain blood vessels in the PVN and scanning confocal microscopy was used to analyze the experimental brains for PVN blood vessel density
Analysis of data using a 3-way analysis of variance (ANOVA) with age, sex and treatment as main factors, showed a significant age effect in vascular density. Analysis of female data by 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A Student‘s t-test of a planned comparison on PND2 showed a significant reduction by DEX treatment (p < 0.05). Analysis of data from females, using 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A planned comparison at PND 2 using Student’s t-test indicated a significant reduction by dex treatment.
The results of these studies demonstrate that there is significant postnatal angiogenic programming and that the vascular density of the PVN is altered by prenatal dexamethasone administration at PND2. The time-course shows developmental fluctuations in vessel density that may prove to be physiologically significant for normal brain function and developmental programming of brain and behavior.
ContributorsWidener, Andrew John-Claude (Author) / Handa, Robert (Thesis director) / Orchinik, Miles (Committee member) / Mustard, Julie (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05