Matching Items (6)
Filtering by

Clear all filters

151375-Thumbnail Image.png
Description
Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal

Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal women, such as FemhrtTM (Simon et al., 2003). Thus, EE is prescribed clinically to women at ages ranging from puberty through reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young, female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection. For these studies, the low and medium doses correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to the range of doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. For each study, cognition was evaluated with a battery of maze tasks tapping several domains of spatial learning and memory. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; this was seen for both cyclic and tonic regimens. Cyclic and tonic delivery of low EE, a dose that corresponds to doses used in the clinic today, resulted in transient and null impairments, respectively, on cognition.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Baxter, Leslie C. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2012
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011
154061-Thumbnail Image.png
Description
Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into

Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into the post-menopausal state. Much of the pre-clinical work evaluating an animal model of menopause involves ovariectomy in rodents; however, ovariectomy results in an abrupt loss of circulating hormones and ovarian tissue, limiting the ability to evaluate gradual follicular depletion. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by selectively depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of menopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the cognitive effects of transitional menopause via VCD-induced follicular depletion over time, as well as to understand potential interactions with age, with VCD treatment beginning at either six or twelve months of age. Results indicated that subjects that experience menopause onset at a younger age had impaired spatial working memory early in the transition to a follicle-deplete state. Moreover, in the mid- and post- menopause time points, VCD-induced follicular depletion amplified an age effect, whereby Middle-Aged VCD-treated animals had poorer spatial working and reference memory performance than Young VCD-treated animals. Correlations suggested that in middle age, animals with higher circulating estrogen levels tended to perform better on spatial memory tasks. Overall, these findings suggest that the age at menopause onset is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study informs the field with respect to how the age at menopause onset might impact cognition in menopausal women, as well as provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition to attenuate age- and menopause- related cognitive decline, and produce healthy brain aging profiles in women who retain their ovaries throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona S. (Committee member) / Conrad, Cheryl D. (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2015
154212-Thumbnail Image.png
Description
Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on

Women are exposed to numerous endogenous and exogenous hormones across the lifespan. In the last several decades, the prescription of novel hormonal contraceptives and hormone therapies (HTs) have resulted in aging women that have a unique hormone exposure history; little is known about the impact of these hormone exposures on short- and long- term brain health. The goal of my dissertation was to understand how lifetime hormone exposures shape the female cognitive phenotype using several innovative approaches, including a new human spatial working memory task, the human radial arm maze (HRAM), and several rodent menopause models with variants of clinically used hormone treatments. Using the HRAM (chapter 2) and established human neuropsychological tests, I determined males outperformed females with high endogenous or exogenous estrogen levels on visuospatial tasks and the spatial working memory HRAM (chapter 3). Evaluating the synthetic estrogen in contraceptives, ethinyl estradiol (EE), I found a high EE dose impaired spatial working memory in ovariectomized (Ovx) rats, medium and high EE doses reduced choline-acetyltransferace-immunoreactive neuron population estimates in the basal forebrain following Ovx (chapter 4), and low EE impaired spatial cognition in ovary-intact rats (chapter 5). Assessing the impact of several clinically-used HTs, I identified a window of opportunity around ovarian follicular depletion outside of which the HT conjugated equine estrogens (CEE) was detrimental to spatial memory (chapter 6), as well as therapeutic potentials for synthetic contraceptive hormones (chapter 9) and bioidentical estradiol (chapter 7) during and after the transition to menopause. Chapter 6 and 7 findings, that estradiol and Ovx benefitted cognition after the menopause transition, but CEE did not, are perhaps due to the negative impact of ovarian-produced, androstenedione-derived estrone; indeed, blocking androstenedione’s conversion to estrone prevented its cognitive impairments (chapter 8). Finally, I determined that EE combined with the popular progestin levonorgestrel benefited spatial memory during the transition to menopause, a profile not seen with estradiol, levonorgestrel, or EE alone (chapter 9). This work identifies several cognitively safe, and enhancing, hormonal treatment options at different time points throughout female aging, revealing promising avenues toward optimizing female health.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona (Committee member) / Whiteaker, Paul (Committee member) / Talboom, Joshua (Committee member) / Arizona State University (Publisher)
Created2015
157689-Thumbnail Image.png
Description
Of the 2.87 million traumatic brain injuries (TBI) sustained yearly in the United States, 75% are diffuse injuries. A single TBI can have acute and chronic influences on the neuroendocrine system leading to hypothalamic-pituitary-adrenal axis (HPA) dysregulation and increased affective disorders. Preliminary data indicate TBI causes neuroinflammation in the hippocampus,

Of the 2.87 million traumatic brain injuries (TBI) sustained yearly in the United States, 75% are diffuse injuries. A single TBI can have acute and chronic influences on the neuroendocrine system leading to hypothalamic-pituitary-adrenal axis (HPA) dysregulation and increased affective disorders. Preliminary data indicate TBI causes neuroinflammation in the hippocampus, likely due to axonal damage, and in the paraventricular nucleus of the hypothalamus (PVN), where no axonal damage is apparent. Mechanisms regulating neuroinflammation in the PVN are unknown. Furthermore, chronic stress causes HPA dysregulation and glucocorticoid receptor (GR)-mediated neuroinflammation in the PVN. The goal of this project was to evaluate neuroinflammation in the HPA axis and determine if GR levels change at 7 days post-injury (DPI).

Adult male and female Sprague Dawley rats were subjected to midline fluid percussion injury. At 7 DPI, half of each brain was post-fixed for immunohistochemistry (IBA-1) and half biopsied for gene/protein analysis. IBA-1 staining was analyzed for microglia activation via skeleton analysis in the hypothalamus and hippocampus. Extracted RNA and protein were used to quantify mRNA expression and protein levels for GRs. Data indicate increased microglia cell number and decreased endpoints/cell and process length in the PVN of males, but not females. In the dentate gyrus, both males and females have an increased microglia cell number after TBI, but there is also an interaction between sex and injury in microglia presentation, where males exhibit a more robust effect than females. Both sexes have significant decreases of endpoints/cell and process length. In both regions, GR protein levels decreased for injured males, but in the hippocampus, GR levels increased for injured females. Data indicate that diffuse TBI causes alterations in microglia morphology and GR levels in the hypothalamus and hippocampus at 7 DPI, providing a potential mechanism for HPA axis dysregulation at a sub-acute time point.
ContributorsRidgway, Samantha (Author) / Thomas, Theresa C (Thesis advisor) / Newbern, Jason (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2019
157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4,

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
ContributorsPena, Veronica Leigh (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019