Matching Items (12)
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
157201-Thumbnail Image.png
Description
The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive

The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive bacteria associated with the onset of obesity and type 2 diabetes. Although, the most common form of obesity and metabolic syndrome intervention is exercise and diet, these recommendations may not improve severe cases of obesity. Thus, an important relevance of my project was to investigate whether the intake of an organometallic complex (OMC) would prevent the onset of metabolic and gastrointestinal complications associated with high-fat diet intake. I hypothesized that the consumption of a HFD for 6 weeks would promote the development of metabolic and gastrointestinal disease risk factors. Next, it was hypothesized that OMC treatment would decrease metabolic risk factors by improving insulin sensitivity and decreasing weight gain. Finally, I hypothesized that HFD-intake would increase the abundance of gram-positive bacteria associated with gastrointestinal disease. My preliminary data investigated the effects of a 6-week HFD on the development of hepatic steatosis, intestinal permeability and inflammation in male Sprague Dawley rats. I found that a 6-week HFD increases hepatic triglyceride concentrations, plasma endotoxins and promotes the production of pro-inflammatory cytokines in the cecum wall. I then investigated whether OMC treatment could prevent metabolic risk factors in male Sprague-Dawley rats fed a HFD for 10 weeks and found that OMC can mitigate risk factors such hyperglycemia, liver disease, impaired endothelial function, and inflammation. Lastly, I investigated the effects of a 10-week HFD on the gastrointestinal system and found an increase in liver triglycerides and free glycerol and alterations of the distal gut microbiome. My results support the hypothesis that a HFD can promote metabolic risk factors, alter the gut microbiome and increase systemic inflammation and that OMC treatment may help mitigate some of these effects. Together, these studies are among the first to demonstrate the effects of a soil-derived compound on metabolic complications. Additionally, these conclusions also provide an essential basis for future gastrointestinal and microbiome studies of OMC treatment.
ContributorsCrawford, Meli'sa Shaunte (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Whisner, Corrie (Committee member) / Hyatt, Jon-Philippe (Committee member) / Arizona State University (Publisher)
Created2019
155475-Thumbnail Image.png
Description
In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to

In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to infections and can target specific mediators to mitigate stress-induced suppression of innate immune activity. Such elucidation is especially important for urban birds, such as the House Sparrow (Passer domesticus), because these birds experience higher pathogen prevalence and transmission when compared to birds in rural regions. I investigated the role of corticosterone (CORT) in stress-induced suppression of two measures of innate immune activity (complement- and natural antibody-mediated activity) in male House Sparrows. Corticosterone, the primary avian glucocorticoid, is elevated during the stress response and high levels of this hormone induce effects through the activation of cytosolic and membrane-bound glucocorticoid receptors (GR). My results demonstrate that CORT is necessary and sufficient for stress-induced suppression of complement-mediated activity, and that this relationship is consistent between years. Corticosterone, however, does not inhibit complement-mediated activity through cytosolic GR, and additional research is needed to confirm the involvement of membrane-bound GR. The role of CORT in stress-induced inhibition of natural antibody-mediated activity, however, remains puzzling. Stress-induced elevation of CORT can suppress natural antibody-mediated activity through the activation of cytosolic GR, but the necessity of this mechanism varies inter-annually. In other words, both CORT-dependent and CORT-independent mechanisms may inhibit natural antibody-mediated activity during stress in certain years, but the causes of this inter-annual variation are not known. Previous studies have indicated that changes in the pathogen environment or food availability can alter regulation of innate immunity, but further research is needed to test these hypotheses. Overall, my dissertation demonstrates that stress inhibits innate immunity through several mechanisms, but environmental pressures may influence this inhibitory relationship.
ContributorsGao, Sisi (Author) / Deviche, Pierre (Thesis advisor) / DeNardo, Dale (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Moore, Michael C. (Committee member) / Arizona State University (Publisher)
Created2017
149337-Thumbnail Image.png
Description
The impact of urbanization on wildlife is becoming an important topic in conservation. However little is known concerning the proximate mechanisms involved which enable some species to persist in cities, while others perish. Adapting to novel city environments requires individuals to maintain a functional physiological response to stressful stimuli, while

The impact of urbanization on wildlife is becoming an important topic in conservation. However little is known concerning the proximate mechanisms involved which enable some species to persist in cities, while others perish. Adapting to novel city environments requires individuals to maintain a functional physiological response to stressful stimuli, while concurrently using the necessary resources (food) needed to persist. A primary function of the stress response is the mobilization of intrinsic energy resources, and thus both requirements (energy and stress) are explicably linked. This dissertation investigates the interaction of energetic reserves and the physiological stress response in a native bird species, the Curve-billed Thrasher, within the context of this species' colonization of Phoenix, Arizona. This research uses a combination of comparative studies, statistical modeling, and experimental approaches conducted in field and captive settings to demonstrate how urban and desert populations of these species differ in energetic state and stress physiology. These studies reveal that the current energetic status of an individual bird influences the secretion of glucocorticoids (primary stress hormones) and can alter how energy reserves are used for gluconeogenesis to produce energy during acute stress. In addition, this research also identifies how differing levels of a hypothalamic neuropeptide (vasotocin) may play a role in mediating differences in stress physiology between populations. The quantity of food available and even temporal variability in its abundance may alter how native birds respond to stress. Increased body condition offsets the costs of maintaining the stress response in urban areas.
ContributorsFokidis, Haralambos Bobby (Author) / Deviche, Pierre (Thesis advisor) / Arizona State University (Publisher)
Created2010
158687-Thumbnail Image.png
Description
Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little

Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations.
ContributorsMaldonado Perez, Nubia Erandi (Author) / Moore, Marianne S (Thesis advisor) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2020