Matching Items (4)
Filtering by

Clear all filters

137016-Thumbnail Image.png
Description
Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal

Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal with a side dish of raw or cooked vegetables. There was a slight trend for raw vegetables to have decreased postprandial blood glucose responses when compared to cooked vegetables.
ContributorsWilkins, Christine Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132257-Thumbnail Image.png
Description
Abstract: It has been established that α-keto-analogs of amino acids can be converted into the amino acids through transamination in vivo. This discovery led to breakthroughs in treating patients who had difficulty digesting traditional proteins, such as in chronic kidney disease (CKD) sufferers where patients have poor kidney function, which

Abstract: It has been established that α-keto-analogs of amino acids can be converted into the amino acids through transamination in vivo. This discovery led to breakthroughs in treating patients who had difficulty digesting traditional proteins, such as in chronic kidney disease (CKD) sufferers where patients have poor kidney function, which poisons the blood with ammonia products.
This pilot study aimed to ascertain the potential for keto acid supplementation in the attempt to supply adequate protein building blocks to healthy populations, with the caveats that said supplementation 1) would utilize non-synthetic methods, 2) offer an alternative to high-phosphate protein supplies such as ruminant animals, and 3) reverse the ill effects of ammonia load by reducing nitrogen intake and consuming ammonia as a fuel for the process of protein synthesis. This proposed solution turns to orange juice and certain varietals of potato juice for their familiarity to consumers, innate nutritional values, and potential for mass-production by many existing companies. The work contained here represents the first phase of experimentation: qualifying the presence of α-keto-analogues of amino acids in these types of produce which, with transamination, could yield the amino acids necessary for adequate protein intake.
Results suggest that these juices do not contain adequate α-keto-analogs of amino acids to supplement proteins in either healthy or ill individuals.
ContributorsRex Deltfantan, Kiko (Author) / Wang, Xu (Thesis director) / Maurer, Megan (Committee member) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05