Matching Items (8)
Filtering by

Clear all filters

152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
137016-Thumbnail Image.png
Description
Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal

Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal with a side dish of raw or cooked vegetables. There was a slight trend for raw vegetables to have decreased postprandial blood glucose responses when compared to cooked vegetables.
ContributorsWilkins, Christine Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
154524-Thumbnail Image.png
Description
This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the future production of benzaldehyde as a sole product. In addition, a novel alternative pathway for the production of protocatechuate (PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore potential routes for improved aromatic product yields, an in silico model using elementary mode analysis was developed. From the model, stoichiometric optimums maximizing both product-to-substrate and biomass-to-substrate yields were discovered in a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic production of catechol. Overall, the work presented in this dissertation highlights contributions to the field of metabolic engineering through novel pathway design for the biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico modelling to identify novel approaches to increasing aromatic product yields.
ContributorsPugh, Shawn (Author) / Nielsen, David (Thesis advisor) / Dai, Lenore (Committee member) / Torres, Cesar (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148272-Thumbnail Image.png
Description

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has been studied extensively for its health-promoting properties and benefits. Apple cider vinegar’s main ingredient is the short chain fatty acid, acetic acid. Short chain fatty acids have been shown to improve mood state and depressive symptoms, as well as amplify the effect of prebiotics in restoring the gut microbiome. This experimental design study examined the effects of ingesting 2 tbsp. apple cider vinegar (1 g acetic acid) twice daily with a meal on the levels of urinary metabolites in 14 college students compared to a control group of 11 college students that took one vinegar supplement tablet (0.015 g of acetic acid) daily for 28 days. All participants were healthy, normal to underactive (< 300 minutes of moderate exercise a week), and free of chronic or acute illnesses. Urinary metabolite analysis revealed a significant production of enzymes involved in the hexosamine pathway in the liquid vinegar group compared to baseline levels. However, anticipation of an alteration in tryptophan metabolites, a possible consequence of altered metabolism of gut microflora, was not observed. These data suggest that apple cider vinegar might be a potential treatment for depression through the production of hexosamine pathway enzymes.

ContributorsBauer, Shayna Dru (Author) / Johnston, Carol (Thesis director) / Sweazea, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131379-Thumbnail Image.png
Description
Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there is a need to look into ways of weakening the internal state of bacterial cells to make them more susceptible

Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there is a need to look into ways of weakening the internal state of bacterial cells to make them more susceptible to antibiotics. For this, we first need to understand what methods bacteria employ to fight against antibiotics. In this work, we have reviewed how bacteria respond to antibiotics. There is a similarity in response to antibiotic exposure and starvation (stringent stress) which changes the metabolic state. We have delineated what metabolism changes take place and how they are associated with oxidative stress. For example, there is a common change in NADH concentration that is tied to both metabolism and oxidative stress. Finally, we have compared the findings in literature with our research on an antibiotic-resistant RNA polymerase mutant that alters the gene expression profile in the general areas of metabolism and oxidative stress. Based on this thesis, we have suggested a couple of strategies to make antibiotics more efficient; however, as antibiotic-mediated killing is very complex, researchers need to delve deeper to understand and manipulate the full cellular response.
ContributorsPredtechenskaya, Maria (Author) / Misra, Rajeev (Thesis director) / Varman, Arul Mozhy (Committee member) / Mhatre, Apurv (Committee member) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to no food. These adaptations also allow the body to recover quickly once food becomes available. They include changes in metabolism that allow different fuel sources to be used for energy, the storing of excess energy absorbed from food in the forms of glycogen and fat to be used in between meals, and a reduction in the basal metabolic rate in response to starvation, as well as physiological changes in the small intestines. Even in places where starvation is not a concern today, these adaptations are still important as they also have an effect on weight gain and dieting in addition to promoting survival when the body is in a starved state.

Disclaimer: The initial goal of this project was to present this information as a podcast episode as a part of a series aimed at teaching the general public about human physiological adaptations. Due to the circumstances with COVID-19 we were unable to meet to make a final recording of the podcast episode. A recording of a practice session recorded earlier in the year has been uploaded instead and is therefore only a rough draft.
ContributorsPhlipot, Stephanie Anne (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131245-Thumbnail Image.png
Description
Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.
ContributorsCusimano, Jason A (Author) / Sweazea, Karen (Thesis director) / Reaven, Peter (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05