Matching Items (3)
Filtering by

Clear all filters

157036-Thumbnail Image.png
Description
Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of

Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of previous work has focused on energy balance as the driver of changes in organismal physiology. While energy is clearly a vital currency, other resources can also be limited and impact physiological functions. Water is essential for life as it is the main constituent of cells, tissues, and organs. Yet, water has received little consideration for its role as a currency that impacts physiological functions. Given the importance of water to most major physiological systems, I investigated how water limitations interact with immune function, metabolism, and reproductive investment, an almost entirely unexplored area. Using multiple species and life stages, I demonstrated that dehydrated animals typically have enhanced innate immunity, regardless of whether the dehydration is a result of seasonal water constraints, water deprivation in the lab, or high physiological demand for water. My work contributed greatly to the understanding of immune function dynamics and lays a foundation for the study of hydration immunology as a component of the burgeoning field of ecoimmunology. While a large portion of my dissertation focused on the interaction between water balance and immune function, there are many other physiological processes that may be impacted by water restrictions. Accordingly, I recently expanded the understanding of how reproductive females can alter metabolic substrates to reallocate internal water during times of water scarcity, an important development in our knowledge of reproductive investments. Overall, by thoroughly evaluating implications and responses to water limitations, my dissertation, when combined previous acquired knowledge on food limitation, will enable scientists to better predict the impacts of future climate change, where, in many regions, rainfall events are forecasted to be less reliable, resulting in more frequent drought.
ContributorsBrusch, George, IV (Author) / DeNardo, Dale F (Thesis advisor) / Blattman, Joseph (Committee member) / French, Susannah (Committee member) / Sabo, John (Committee member) / Taylor, Emily (Committee member) / Arizona State University (Publisher)
Created2019
133906-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases

Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases to maintain oxygen supply to the body. Oxidative muscle fibers contract to move the body for prolonged periods of time, creating oxidative stress which is managed by the mitochondria which produce the ATP that supplies the muscle fiber, and as the body returns to its resting state, oxygen continues to be consumed in order to return to steady state. Following endurance training, changes in cardiac output, muscle fiber types, mitochondria, substrate utilization, and oxygen consumption following exercise make adaptations to make metabolism more efficient. Resting heart rate decreases and stroke volume increases. Fast twitch muscle fibers shift into more oxidative fibers, sometimes through mitochondrial biogenesis, and more fat is able to be utilized during exercise. The excess postexercise oxygen consumption following exercise bouts is reduced, and return to steady state becomes quicker. In conclusion, endurance training optimizes metabolic response during acute bouts of aerobic exercise.
ContributorsWarner, Erin (Author) / Nolan, Nicole (Thesis director) / Cataldo, Donna (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137016-Thumbnail Image.png
Description
Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal

Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal with a side dish of raw or cooked vegetables. There was a slight trend for raw vegetables to have decreased postprandial blood glucose responses when compared to cooked vegetables.
ContributorsWilkins, Christine Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05