Matching Items (7)
Filtering by

Clear all filters

136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
148272-Thumbnail Image.png
Description

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has been studied extensively for its health-promoting properties and benefits. Apple cider vinegar’s main ingredient is the short chain fatty acid, acetic acid. Short chain fatty acids have been shown to improve mood state and depressive symptoms, as well as amplify the effect of prebiotics in restoring the gut microbiome. This experimental design study examined the effects of ingesting 2 tbsp. apple cider vinegar (1 g acetic acid) twice daily with a meal on the levels of urinary metabolites in 14 college students compared to a control group of 11 college students that took one vinegar supplement tablet (0.015 g of acetic acid) daily for 28 days. All participants were healthy, normal to underactive (< 300 minutes of moderate exercise a week), and free of chronic or acute illnesses. Urinary metabolite analysis revealed a significant production of enzymes involved in the hexosamine pathway in the liquid vinegar group compared to baseline levels. However, anticipation of an alteration in tryptophan metabolites, a possible consequence of altered metabolism of gut microflora, was not observed. These data suggest that apple cider vinegar might be a potential treatment for depression through the production of hexosamine pathway enzymes.

ContributorsBauer, Shayna Dru (Author) / Johnston, Carol (Thesis director) / Sweazea, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve the role of metabolic regulators. In particular, one of these peptides called MOTS-c has been shown to regulate glucose and fat metabolism in an AMPK-dependent manner. With its capacity to enter the mitochondria and impact gene expression, MOTS-c has also displayed the ability to increase aerobic exercise performance by triggering elevated synthesis of the HO-1 antioxidant. Overall these findings position MOTS-c as a promising treatment for metabolic diseases as well as a potential dietary supplement to boost ATP availability.

ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description
Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to no food. These adaptations also allow the body to recover quickly once food becomes available. They include changes in metabolism that allow different fuel sources to be used for energy, the storing of excess energy absorbed from food in the forms of glycogen and fat to be used in between meals, and a reduction in the basal metabolic rate in response to starvation, as well as physiological changes in the small intestines. Even in places where starvation is not a concern today, these adaptations are still important as they also have an effect on weight gain and dieting in addition to promoting survival when the body is in a starved state.

Disclaimer: The initial goal of this project was to present this information as a podcast episode as a part of a series aimed at teaching the general public about human physiological adaptations. Due to the circumstances with COVID-19 we were unable to meet to make a final recording of the podcast episode. A recording of a practice session recorded earlier in the year has been uploaded instead and is therefore only a rough draft.
ContributorsPhlipot, Stephanie Anne (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131245-Thumbnail Image.png
Description
Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.
ContributorsCusimano, Jason A (Author) / Sweazea, Karen (Thesis director) / Reaven, Peter (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05