Matching Items (4)
Filtering by

Clear all filters

136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
148272-Thumbnail Image.png
Description

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has been studied extensively for its health-promoting properties and benefits. Apple cider vinegar’s main ingredient is the short chain fatty acid, acetic acid. Short chain fatty acids have been shown to improve mood state and depressive symptoms, as well as amplify the effect of prebiotics in restoring the gut microbiome. This experimental design study examined the effects of ingesting 2 tbsp. apple cider vinegar (1 g acetic acid) twice daily with a meal on the levels of urinary metabolites in 14 college students compared to a control group of 11 college students that took one vinegar supplement tablet (0.015 g of acetic acid) daily for 28 days. All participants were healthy, normal to underactive (< 300 minutes of moderate exercise a week), and free of chronic or acute illnesses. Urinary metabolite analysis revealed a significant production of enzymes involved in the hexosamine pathway in the liquid vinegar group compared to baseline levels. However, anticipation of an alteration in tryptophan metabolites, a possible consequence of altered metabolism of gut microflora, was not observed. These data suggest that apple cider vinegar might be a potential treatment for depression through the production of hexosamine pathway enzymes.

ContributorsBauer, Shayna Dru (Author) / Johnston, Carol (Thesis director) / Sweazea, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131245-Thumbnail Image.png
Description
Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.
ContributorsCusimano, Jason A (Author) / Sweazea, Karen (Thesis director) / Reaven, Peter (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165801-Thumbnail Image.png
Description

Sphingosine-1-phosphate receptors (S1PRs) and their signaling pathways play an important role in mediating vascular health and function. Upon ligand mediated activation, S1PRs 1-5 couple with diverse heterotrimeric G-protein subunits (Gαi, Gαq/11, Gα12/13), initiating multimodal downstream signaling pathways which result in various physiological outcomes in the vasculature, including cell proliferation and

Sphingosine-1-phosphate receptors (S1PRs) and their signaling pathways play an important role in mediating vascular health and function. Upon ligand mediated activation, S1PRs 1-5 couple with diverse heterotrimeric G-protein subunits (Gαi, Gαq/11, Gα12/13), initiating multimodal downstream signaling pathways which result in various physiological outcomes in the vasculature, including cell proliferation and migration, barrier integrity preservation or loss, contraction, and inflammation. Specifically, S1PR2 activation has been linked to endothelial activation, barrier integrity loss, and inflammation, whereas S1PR1 activation contributes to barrier integrity preservation, vasodilation, and anti-inflammatory properties. Although the role of S1PRs during pathophysiological conditions such as acute ischemic stroke is under current investigation, the complete S1PR expression profile in the cerebrovasculature following acute ischemic injury has not yet been investigated. Therefore, the present study was aimed to characterize the expression profiles of S1PRs 1-5 in human brain microvascular endothelial cells (HBMECs) and human brain vascular smooth muscle cells (HBVSMCs) following 3h hypoxia plus glucose deprivation (HGD; in vitro ischemic injury) exposure. At the mRNA level, we observed expression of S1PRs 1-5 in HBVSMCs and S1PRs 1-4 in HBMECs. Under basal conditions, we employed real-time RT-PCR and observed that mRNA levels of S1PR1 were highest in expression followed by S1PR3 then S1PR2 in HBMECs. On the other hand, S1PR3 mRNA was the highest followed by S1PR2 then S1PR1 in HBVSMCs. In HBMECs, HGD exposure increased S1PR1 mRNA and protein levels, but decreased S1PR1 mRNA in HBVSMCs. Similarly, HGD induced increased S1PR3 mRNA in HBMECs and decreased S1PR3 mRNA in HBVSMCs. For S1PR2, HGD did not alter mRNA or protein expression in HBMECs but increased mRNA levels in HBVSMCs. These data suggest that acute exposure to HGD appears to differentially regulate expression of S1PRs in HBMECs and HBVSMCs. The differential expression in S1PRs both basally and following HGD exposure may suggest distinct signaling mechanisms at play within the two cerebrovascular cell types, implicating these receptors as potential therapeutic targets following ischemic injury.

ContributorsEghrari, Nafis (Author) / Sweazea, Karen (Thesis director) / Gonzales, Rayna (Thesis director) / Wendt, Trevor (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05