Matching Items (20)

135102-Thumbnail Image.png

Improving the Realism and Magnetic Resonance Imaging of Multicellular Tumor Spheroids

Description

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting and disturbing this activity through personalized treatments, it is the hope to provide better diagnostics and care to patients. Experimenting with multicellular tumor spheroids (MCTS) allows for a rapid, inexpensive and convenient solution to studying multiple in vitro tumors. High quality magnetic resonance images of small samples, such as spheroid, however, are difficult to achieve with current radio frequency coils. In addition, in order for the information provided by these scans to accurately represent the interactions and metabolic activity in vivo, there is a need for a perfused vascular network. A perfused vascular network has the potential to improve metabolic realism and particle transport within a tumor spheroid. By creating a more life-like cancer model and allowing the progressive imaging of metabolic functions of such small samples, a better, more efficient mode of studying metabolic activity in cancer can be created and research efforts can expand. The progress described in this paper attempts to address both of these current shortcomings of metabolic cancer research and offers potential solutions, while acknowledging the potential of future work to improve cancer research with MCTS.

Contributors

Agent

Created

Date Created
  • 2016-12

135005-Thumbnail Image.png

Defining the effects of ERK/MAPK hyperactivation on the development of GABAergic

Description

Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds

Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been examined in the context of cancers since mutations can lead to the disruption of the cell cycle and unregulated cellular proliferation. In addition, germline mutations in the pathway have been shown to cause a group of syndromes known as RASopathies. RASopathies are marked by facial defects, seizures, developmental delays, and cognitive dysfunction often due to enhanced activation of the RAS signaling cascade. Although there are noted factors that play roles in neurological disease, such as a hyperactivated RAS signaling cascade, the pathogenesis of neurological defects is not fully understood. The Newbern lab uses conditional mutagenesis to examine how hyperactivating the RAS/MAPK pathway affects GABAergic neurons in a cortical microcircuit, especially during development. Inhibitory neurons are implicated in seizures and epilepsy is common in RASopathies, thus GABAergic neurons are of particular interest (Rauen, 2013). Gain-of-function ERK was not found to significantly alter global locomotion or anxiety-like behaviors. Interestingly, the mutant mice exhibited freezing behavior in the first twenty-two seconds of the open field assay that appeared to be consistent with absence seizures. Direct EEG recordings confirmed spontaneous seizure activity and mutants had a reduced seizure threshold. We hypothesized that these deficits were due to altered GABAergic neuron number. Indeed, mutant mice exhibited a 30% reduction in total cortical GABAergic neuron number. This effect appeared to be cell subtype specific, where neurons expressing somatostatin (SST) existed in similar numbers among controls and mutants but a significant decrease in the number of those expressing parvalbumin (PV) was observed. I hypothesized that a recently identified GABAergic neuron expressing vasoactive intestinal polypeptide (VIP) would also be affected in such a manner that fewer VIP neurons exist in the mutants than the wildtype. Subsequent histological studies in these mice found there to be no significant difference in VIP populations. Selective affects seem to only have an effect on the development of PV neurons in the cortex. Further studies are underway to define the mechanism responsible for aberrant GABAergic neuron development.

Contributors

Agent

Created

Date Created
  • 2016-05

133906-Thumbnail Image.png

Metabolic Adaptations to Aerobic Exercise: A Review

Description

Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training,

Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases to maintain oxygen supply to the body. Oxidative muscle fibers contract to move the body for prolonged periods of time, creating oxidative stress which is managed by the mitochondria which produce the ATP that supplies the muscle fiber, and as the body returns to its resting state, oxygen continues to be consumed in order to return to steady state. Following endurance training, changes in cardiac output, muscle fiber types, mitochondria, substrate utilization, and oxygen consumption following exercise make adaptations to make metabolism more efficient. Resting heart rate decreases and stroke volume increases. Fast twitch muscle fibers shift into more oxidative fibers, sometimes through mitochondrial biogenesis, and more fat is able to be utilized during exercise. The excess postexercise oxygen consumption following exercise bouts is reduced, and return to steady state becomes quicker. In conclusion, endurance training optimizes metabolic response during acute bouts of aerobic exercise.

Contributors

Agent

Created

Date Created
  • 2018-05

131245-Thumbnail Image.png

The Effect of Glucocorticoids on Insulin Resistance in Rat Skeletal Muscle via TXNIP

Description

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has

Glucocorticoids are a class of corticosteroids that bind to glucocorticoid receptors
within cells that result in changes in the metabolism of carbohydrates and immune functions.
Ingesting glucocorticoids has also been linked to insulin resistance, a main feature of Type 2
diabetes. Experiments including polymerase chain reaction, western blotting, and glycogen
synthase analysis were conducted to determine if exposure to higher doses of dexamethasone, a
glucocorticoid, induces insulin resistance in cultured rat skeletal muscle via interaction with
thioredoxin-interacting protein (TXNIP). Treatment with dexamethasone was shown to cause
mild increases in TXNIP while a definitive increase or decrease in insulin signaling was unable
to be determined.

Contributors

Agent

Created

Date Created
  • 2020-05

131379-Thumbnail Image.png

Role of Metabolism in Antibiotic Resistance

Description

Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there

Each year, more and more multi-drug resistant bacterial strains emerge, thus complicating treatment and increasing the average stay in the intensive care unit. As antibiotics are being rendered inefficient, there is a need to look into ways of weakening the internal state of bacterial cells to make them more susceptible to antibiotics. For this, we first need to understand what methods bacteria employ to fight against antibiotics. In this work, we have reviewed how bacteria respond to antibiotics. There is a similarity in response to antibiotic exposure and starvation (stringent stress) which changes the metabolic state. We have delineated what metabolism changes take place and how they are associated with oxidative stress. For example, there is a common change in NADH concentration that is tied to both metabolism and oxidative stress. Finally, we have compared the findings in literature with our research on an antibiotic-resistant RNA polymerase mutant that alters the gene expression profile in the general areas of metabolism and oxidative stress. Based on this thesis, we have suggested a couple of strategies to make antibiotics more efficient; however, as antibiotic-mediated killing is very complex, researchers need to delve deeper to understand and manipulate the full cellular response.

Contributors

Agent

Created

Date Created
  • 2020-05

Human Physiological Adaptations to Starvation and Caloric Restriction

Description

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of

Throughout history humans have had to adapt to changing conditions in order to survive. Food shortages are one of the major pressures that have shaped past populations. Because of this, the human body has many physiological adaptations that allow it to go extended periods of time consuming little to no food. These adaptations also allow the body to recover quickly once food becomes available. They include changes in metabolism that allow different fuel sources to be used for energy, the storing of excess energy absorbed from food in the forms of glycogen and fat to be used in between meals, and a reduction in the basal metabolic rate in response to starvation, as well as physiological changes in the small intestines. Even in places where starvation is not a concern today, these adaptations are still important as they also have an effect on weight gain and dieting in addition to promoting survival when the body is in a starved state.

Disclaimer: The initial goal of this project was to present this information as a podcast episode as a part of a series aimed at teaching the general public about human physiological adaptations. Due to the circumstances with COVID-19 we were unable to meet to make a final recording of the podcast episode. A recording of a practice session recorded earlier in the year has been uploaded instead and is therefore only a rough draft.

Contributors

Agent

Created

Date Created
  • 2020-05

148272-Thumbnail Image.png

Modifications of the urinary metabolome in college students after 4-weeks of daily vinegar ingestion that resulted in reductions in depression scores

Description

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation

Depression is a worldwide public health problem that affects millions of people every year. Due to recent reports that depressed individuals have an altered gut microbiome composition, there is speculation that treatments that influence microorganisms in the gut could potentially lead to alleviation of depressive symptoms. Apple cider vinegar has been studied extensively for its health-promoting properties and benefits. Apple cider vinegar’s main ingredient is the short chain fatty acid, acetic acid. Short chain fatty acids have been shown to improve mood state and depressive symptoms, as well as amplify the effect of prebiotics in restoring the gut microbiome. This experimental design study examined the effects of ingesting 2 tbsp. apple cider vinegar (1 g acetic acid) twice daily with a meal on the levels of urinary metabolites in 14 college students compared to a control group of 11 college students that took one vinegar supplement tablet (0.015 g of acetic acid) daily for 28 days. All participants were healthy, normal to underactive (< 300 minutes of moderate exercise a week), and free of chronic or acute illnesses. Urinary metabolite analysis revealed a significant production of enzymes involved in the hexosamine pathway in the liquid vinegar group compared to baseline levels. However, anticipation of an alteration in tryptophan metabolites, a possible consequence of altered metabolism of gut microflora, was not observed. These data suggest that apple cider vinegar might be a potential treatment for depression through the production of hexosamine pathway enzymes.

Contributors

Agent

Created

Date Created
  • 2021-05

148130-Thumbnail Image.png

Analyzing Myosin Heavy Chain Isoform Distribution in Skeletal Muscle: a methodological approach

Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

Contributors

Agent

Created

Date Created
  • 2021-05

137016-Thumbnail Image.png

Postprandial Glucose Responses to a High Glycemic Meal with Raw or Cooked Vegetables

Description

Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which

Early humans adapted to eating cooked food with increased energy density and absorption of macronutrients. However, in modern times many suffer from diseases like obesity and type 2 diabetes which can result from too much energy being absorbed from food. This study measures glucose responses to a high glycemic meal with a side dish of raw or cooked vegetables. There was a slight trend for raw vegetables to have decreased postprandial blood glucose responses when compared to cooked vegetables.

Contributors

Agent

Created

Date Created
  • 2014-05

136136-Thumbnail Image.png

An Examination of Citrate Synthase Activity in Experimentally Evolved Drosophila melanogaster

Description

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.

Contributors

Agent

Created

Date Created
  • 2015-05