Matching Items (7)
Filtering by

Clear all filters

135333-Thumbnail Image.png
Description
Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years.

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.
ContributorsQuigley, Elizabeth (Co-author) / Luo, Zheyu (Co-author) / Murella, Anoosha (Co-author) / Lee, Wey Lyn (Co-author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137142-Thumbnail Image.png
Description
This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.
ContributorsGibson, Gaines Sullivan (Author) / Wells, Valana (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Today, the vision of Commercial Supersonic Travel is often dreamed possible with innovation. Modern tech-business plans to reinvent commercial SuperSonic Transport (SST), while gaining reliable venture capital investment and proactive social backing. However, the concept’s global viability remains questionable, as regulation opposes its integrability. As a result, SST has become

Today, the vision of Commercial Supersonic Travel is often dreamed possible with innovation. Modern tech-business plans to reinvent commercial SuperSonic Transport (SST), while gaining reliable venture capital investment and proactive social backing. However, the concept’s global viability remains questionable, as regulation opposes its integrability. As a result, SST has become industrially forgotten. This research paper challenges the neglect of SST through routing optimizations derived from an industry’s collective research, while outlining decisive use-cases. Initially, this paper describes the difficulty in SST’s integration through its logistical tasks, demanding designs, and lacking efficiency. After that, the paper defines an optimization strategy, through software-analyzed flight paths, for overall supersonic operations. This strategy was proven to shorten established SST flights by 6%, while enabling the implementation of newfound SST paths. Here, optimization averaged 3.3% on density-derived routes and 5.4% on software-derived routes. More importantly, this paper demonstrated routing optimization enables MACH 1.6 aircraft to achieve MACH 2 flight times. Further, this paper attempts to justify SST through an analysis of its market, financials, and social perspectives. With that, the paper justifies an ideal SST customer earns 630$/hr, while such measurements vary amongst flight types. Finally, this paper conceptualizes that SST, with optimization, promises a noteworthy business, while developments in aircraft designs may revamp the aerospace industry completely.

ContributorsDe Roo, Matisse (Author) / Takahashi, Timothy (Thesis director) / Dahm, Werner (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
161080-Thumbnail Image.png
Description

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to explore this new region of flight. The goal of the X-2 was to gather data on high Mach Number and high-altitude flight as well as aerodynamic heating. The X-2 had poor lateral stability resulting in it being unstable at high Mach Numbers and moderate angles of attack. The program was full of new and unforeseen technical challenges resulting in many delays and tragedies. The program ended when stability problems resulted in a fatal crash destroying the aircraft and killing the test pilot. This case study addresses the historical background of the program, human influence, the stability problems encountered and conducting a stability analysis of the aircraft. To conduct the stability analysis, the potential flow solver, VORLAX, was used to gather aerodynamic coefficient data of the X-2 and determine if these stability problems could be determined from the data obtained. By comparing the results from VORLAX to a wind tunnel study, I determined that the poor lateral directional stability and control coupling issues were foreseeable in the initial design.

ContributorsObrien, Kevin (Author) / Takahashi, Timothy (Thesis director) / Nullmeyer, Robert (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2021-12
Description
This thesis examines how a recently proposed concept for a highly-truncated aerospike nozzle can be expected to perform at altitudes corresponding to ambient pressures from sea-level to full vacuum conditions, as would occur during second-stage ascent and during second-stage descent and return to Earth. Of particular importance is how the base pressure varies

This thesis examines how a recently proposed concept for a highly-truncated aerospike nozzle can be expected to perform at altitudes corresponding to ambient pressures from sea-level to full vacuum conditions, as would occur during second-stage ascent and during second-stage descent and return to Earth. Of particular importance is how the base pressure varies with ambient pressure, especially at low ambient pressures for which the resulting highly underexpanded flows exiting from discrete thrust chambers around the truncated aerospike merge to create a closed (unventilated) base flow. The objective was to develop an approximate but usefully accurate and technically rooted way of estimating conditions for which the jets issuing from adjacent thrust chambers will merge before the end of the truncated aerospike is reached. Three main factors that determine the merging distance are the chamber pressure, the altitude, and the spacing between adjacent thrust chambers. The Prandtl-Meyer expansion angle was used to approximate the initial expansion of the jet flow issuing from each thrust chamber. From this an approximate criterion was developed for the downstream distance at which the jet flows from adjacent thrust chambers merge. Variations in atmospheric gas composition, specific heat ratio, temperature, and pressure with altitude from sea-level to 600 km were accounted for. Results showed that with decreasing atmospheric pressure during vehicle ascent, the merging distance decreases as the jet flows become increasingly under-expanded. Increasing the number of thrust chambers decreases the merging distance exponentially, and increasing chamber pressure results in a decrease of the merging distance as well.
ContributorsHerrington, Katie (Author) / Dahm, Werner (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2024-05
131763-Thumbnail Image.png
Description
The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation of kinematics with various aerodynamic principles being added incrementally. The primary aerodynamic principle that influenced the trajectory of the projectile was in the coefficient of drag. The drag coefficient was split into three primary components: the form drag, skin friction drag, and base pressure drag. These together made up the core of the model, additional complexity served to increase the accuracy of the model and generalize to different projectile profiles.
ContributorsBlair, Martin (Co-author) / Armenta, Francisco (Co-author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05