Matching Items (3)
Filtering by

Clear all filters

136479-Thumbnail Image.png
Description
The following paper presents a case study within the Aerospace industry of a contract between two companies that are working together on an international level. A review of pertinent literature is used to further understand contract manufacturing as it is derived from outsourcing. Additionally, there is discussion of the forms

The following paper presents a case study within the Aerospace industry of a contract between two companies that are working together on an international level. A review of pertinent literature is used to further understand contract manufacturing as it is derived from outsourcing. Additionally, there is discussion of the forms and methods of communication that are used between organizations and the implications that these have upon the functioning of inter-organizational agreements. The case study focuses primarily upon the communications that have been implemented within a contract manufacturing setting to enable two competing Aerospace manufacturers to work together on a multi-year project.
ContributorsTagtmeyer, Robert Jon (Author) / Carter, Joseph (Thesis director) / Printezis, Antonios (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
133491-Thumbnail Image.png
Description
Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the satellite's Attitude Determination and Control System, or ADCS, must be properly tested and calibrated on the ground to ensure that it performs to its requirements. A commercial ADCS unit, the MAI-400, has been selected for this mission. The expected environmental disturbances must be characterized and modeled in order to inform planning the operations of this system. Appropriate control gains must also be selected to ensure the optimal satellite response. These gains are derived through a system model in Simulink and its response optimization tool, and these gains are then tested in a supplier provided Dynamic Simulator.
ContributorsWofford, Justin Michael (Author) / Bowman, Judd (Thesis director) / Jacobs, Daniel (Committee member) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05