Matching Items (13)

Filtering by

Clear all filters

133491-Thumbnail Image.png

Modeling and Testing of a CubeSat Attitude Control System

Description

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect.

Accurate pointing is essential for any space mission with an imaging payload. The Phoenix Cubesat mission is being designed to take thermal images of major US cities from Low Earth Orbit in order to study the Urban Heat Island effect. Accurate pointing is vital to ensure mission success, so the satellite's Attitude Determination and Control System, or ADCS, must be properly tested and calibrated on the ground to ensure that it performs to its requirements. A commercial ADCS unit, the MAI-400, has been selected for this mission. The expected environmental disturbances must be characterized and modeled in order to inform planning the operations of this system. Appropriate control gains must also be selected to ensure the optimal satellite response. These gains are derived through a system model in Simulink and its response optimization tool, and these gains are then tested in a supplier provided Dynamic Simulator.

Contributors

Created

Date Created
2018-05

133543-Thumbnail Image.png

A Survey of Modern Gridded Ion Propulsion Systems and Their Development and Applications in Future Space Missions

Description

This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and

This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits that may be associated with solar-powered ion propulsion systems and posits plausible solutions or alternatives to remedy such limitations. These topics are presented with the intent of reviewing how ion propulsion technology evolved in its journey to develop to today's systems, and to facilitate thought and discussion on where further development of ion propulsion systems can be directed.

Contributors

Agent

Created

Date Created
2018-05

133566-Thumbnail Image.png

Validation of Active Pixel Sensors to Develop Enhanced Star Trackers

Description

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.

Contributors

Agent

Created

Date Created
2018-05

Metallurgical Test Comparison of Aerospace Material using Additive Manufacturing Technologies vs. Wrought Technologies

Description

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous manufacturing methods, as well as producing more cost effective, geometrically-complex products. This investigation evaluated the performance of 3D-printed aerospace test specimens made by Powder Bed Fusion Technologies, and compared them to forged specimens. A design of experiments varying build parameters was conducted in order to determine AM component porosity. Factors such as powder post-processing, directionality of the build, and fractology of the samples were evaluated through tensile strength testing and hardness testing of Inconel 718 wrought and EBM printed materials. Using electron microsopy, the responses to these factors were analyzed for stress fractures, grain boundaries, and other defects that occurred in the testing process. The comparison determined which metallurgical process provides the most effective material for aircraft usage.

Contributors

Agent

Created

Date Created
2017-05

135275-Thumbnail Image.png

Design of Pneumatically Actuated Torsional Loading for High Strain Rate Testing

Description

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.

Contributors

Agent

Created

Date Created
2016-05

136994-Thumbnail Image.png

Design of a Gravity-Fed Hydrodynamic Testing Tunnel

Description

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.

Contributors

Agent

Created

Date Created
2014-05

137142-Thumbnail Image.png

Design of Rocket Engine Nozzle Ejectors

Description

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.

Contributors

Agent

Created

Date Created
2014-05

131763-Thumbnail Image.png

Modeling Trajectories of Supersonic Projectiles

Description

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation of kinematics with various aerodynamic principles being added incrementally. The primary aerodynamic principle that influenced the trajectory of the projectile was in the coefficient of drag. The drag coefficient was split into three primary components: the form drag, skin friction drag, and base pressure drag. These together made up the core of the model, additional complexity served to increase the accuracy of the model and generalize to different projectile profiles.

Contributors

Agent

Created

Date Created
2020-05

132168-Thumbnail Image.png

Innovation Space and Design of Autonomous Aircraft Systems: A Capstone Product Development Comparison

Description

During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The

During my fourth year at Arizona State University, I enrolled in two capstone projects while working towards my
undergraduate degree in aerospace engineering. The first of the two team projects was an aerospace capstone: Design of
Autonomous Aircraft Systems. The second being a capstone project based out of Arizona State’s design school:
Innovation Space. The purpose of this dual enrollment was to compare and contrast the two product development projects,
in hopes to recommend a course of action to engineers younger than myself who are presented the option of multiple
capstones. This report will elaborate on three areas of engineering design and how they were realized in these projects.
These 3 topics are product development and its effect on design to manufacture, design feature creep, and technical vs
non-technical design. After considering the pros and cons of both capstone projects and their relation to the three main
topics of this report, it was decided that individuals who are motivated to become the best engineers they can be upon
graduating from an undergraduate program, they should find the time to take both capstone courses. Both Design of
Autonomous Aircraft Systems and Innovation Space present opportunities to create new ways of engineering thinking, all
of which will be necessary for an engineer to succeed in his/her first years in industry.

Contributors

Created

Date Created
2019-05

131242-Thumbnail Image.png

Studying the Effect of Model Input on Output Accuracy Using an Automated CFD Tool

Description

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to turbulent flow. Each of these input parameters are tested for the NACA 0012 and SC-1095 airfoils to ensure that the accuracy is similar regardless of geometric complexity. The TACAA program was used to run all simulation testing, and its overall functionality is discussed. The results gathered from the preliminary testing showed that the spread of variable input data points caused data gaps in the transonic regime results, which provided motivation to conduct further testing within the transonic region for both airfoils. After collecting all TACAA results, data from wind tunnel testing was compiled to compare. The comparison showed that (1) additional testing would be necessary to fully assess the accuracy of the results for the SC-1095 airfoil and (2) TACAA is generally accurate for compressible, turbulent flows.

Contributors

Agent

Created

Date Created
2020-05